Abstract
We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HCO3- transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum. In one series of experiments, we lowered basolateral pH (pHb) from 7.5 to 6.8 by reducing [HCO3-]b from 10 to 2 mM at a constant pCO2. This reduction of pHb and [HCO3-]b causes a large (approximately 0.35), rapid fall in pHi as well as a transient depolarization of the basolateral membrane. Returning pHb and [HCO3-]b to normal has the opposite effects. Similar reductions of luminal pH (pHl) and [HCO3-]l have only minor effects. The reduction of [HCO3-]b and pHb also produces a reversible fall in aiNa. In a second series of experiments, we reduced [Na+]b at constant [HCO3-]b and pHb, and also observed a rapid fall in pHi and a transient basolateral depolarization. These changes are reversed by returning [Na+]b to normal. The effects of altering [Na+]l in the presence of HCO3-, or of altering [Na+]b in the nominal absence of HCO3-, are substantially less. Although the effects on pHi and basolateral membrane potential of altering either [HCO3-]b or [Na+]b are largely blocked by 4-acetamido-4- isothiocyanostilbene-2,2'-disulfonate (SITS), they are not affected by removal of Cl-, nor are there accompanying changes in aiCl consistent with a tight linkage between Cl- fluxes and those of Na+ and HCO3-. The aforementioned changes are apparently mediated by a single transport system, not involving Cl-. We conclude that HCO3- transport is restricted to the basolateral membrane, and that HCO3- fluxes are linked to those of Na+. The data are compatible with an electrogenic Na/HCO3 transporter that carries Na+, HCO3-, and net negative charge in the same direction.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostopoulos T., Planelles G. Organic anion permeation at the proximal tubule of necturus: an electrophysiological study of the peritubular membrane. Pflugers Arch. 1979 Sep;381(3):231–239. doi: 10.1007/BF00583254. [DOI] [PubMed] [Google Scholar]
- Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange. J Gen Physiol. 1983 Jan;81(1):29–52. doi: 10.1085/jgp.81.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boron W. F., McCormick W. C., Roos A. pH regulation in barnacle muscle fibers: dependence on extracellular sodium and bicarbonate. Am J Physiol. 1981 Jan;240(1):C80–C89. doi: 10.1152/ajpcell.1981.240.1.C80. [DOI] [PubMed] [Google Scholar]
- Guggino W. B., Boulpaep E. L., Giebisch G. Electrical properties of chloride transport across the necturus proximal tubule. J Membr Biol. 1982;65(3):185–196. doi: 10.1007/BF01869962. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura G., Spring K. R. Luminal Na+ entry into Necturus proximal tubule cells. Am J Physiol. 1979 Mar;236(3):F295–F301. doi: 10.1152/ajprenal.1979.236.3.F295. [DOI] [PubMed] [Google Scholar]
- Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
- Liedtke C. M., Hopfer U. Anion transport in brush border membranes isolated from rat small intestine. Biochem Biophys Res Commun. 1976 May 23;76(2):579–585. doi: 10.1016/0006-291x(77)90763-x. [DOI] [PubMed] [Google Scholar]
- Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976 Mar 15;154(3):597–604. [PMC free article] [PubMed] [Google Scholar]
- RADTKE H. W., Rumrich G., Kinne-saffran E., Ulrich K. J. Dual action of acetazolamide and furosemide on proximal volume absorption in the rat kidney. Kidney Int. 1972 Feb;1(2):100–105. doi: 10.1038/ki.1972.13. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Sackin H., Boulpaep E. L. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogenic transport. Am J Physiol. 1981 Nov;241(5):F540–F555. doi: 10.1152/ajprenal.1981.241.5.F540. [DOI] [PubMed] [Google Scholar]
- Sackin H., Boulpaep E. L. Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport. Am J Physiol. 1981 Jul;241(1):F39–F52. doi: 10.1152/ajprenal.1981.241.1.F39. [DOI] [PubMed] [Google Scholar]
- Spring K. R., Kimura G. Chloride reabsorption by renal proximal tubules of Necturus. J Membr Biol. 1978 Jan 18;38(3):233–254. doi: 10.1007/BF01871924. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. C. New design for sodium-sensitive glass micro-electrode. J Physiol. 1970 Sep;210(2):82P–83P. [PubMed] [Google Scholar]
- Thomas R. C. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol. 1977 Dec;273(1):317–338. doi: 10.1113/jphysiol.1977.sp012096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullrich K. J., Capasso G., Rumrich G., Papavassiliou F., Klöss S. Coupling between proximal tubular transport processes. Studies with ouabain, SITS and HCO3-free solutions. Pflugers Arch. 1977 Apr 25;368(3):245–252. doi: 10.1007/BF00585203. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Radtke H. W., Rumrich G. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pflugers Arch. 1971;330(2):149–161. doi: 10.1007/BF00643031. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Rumrich G., Baumann K. Renal proximal tubular buffer-(glycodiazine) transport. Inhomogeneity of local transport rate, dependence on sodium, effect of inhibitors and chronic adaptation. Pflugers Arch. 1975 Jun 26;357(3-4):149–163. doi: 10.1007/BF00585971. [DOI] [PubMed] [Google Scholar]
- Warnock D. G., Rector F. C., Jr Proton secretion by the kidney. Annu Rev Physiol. 1979;41:197–210. doi: 10.1146/annurev.ph.41.030179.001213. [DOI] [PubMed] [Google Scholar]