Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1983 Feb 1;81(2):255–281. doi: 10.1085/jgp.81.2.255

Lyotropic anions. Na channel gating and Ca electrode response

PMCID: PMC2215569  PMID: 6302198

Abstract

The effects of external anions on gating of Na channels of frog skeletal muscle were studied under voltage clamp. Anions reversibly shift the voltage dependence of peak sodium permeability and of steady state sodium inactivation towards more negative potentials in the sequence: methanesulfonate less than or equal to Cl- less than or equal to acetate less than Br- less than or equal to NO-3 less than or equal to SO2-4 less than benzenesulfonate less than SCN- less than ClO-4; approximately the lyotropic sequence. Voltage shifts are graded with mole fraction in mixtures and are roughly additive to calcium shifts. The peak PNa is not greatly affected. Except for SO2-4, these anions did not change the Ca++ activity of the solutions as measured with the dye murexide. Shifts of gating can be explained as the electrostatic effect of anion adsorption to the Na channel or to nearby lipid. Such adsorption is expected to follow the lyotropic series. Anions also interfere significantly with the response of a Ca-sensitive membrane electrode following the same sequence of effectiveness as the shifts of gating. The lyotropic anions decrease the Ca++ sensitivity and cause anomalously negative responses of the Ca electrode because these anions are somewhat permeant in the hydrophobic detector membrane.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell D. T., Hille B. Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle. J Gen Physiol. 1976 Mar;67(3):309–323. doi: 10.1085/jgp.67.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chiarandini D. J., Sanchez J. A., Stefani E. Effect of calcium withdrawal on mechanical threshold in skeletal muscle fibres of the frog. J Physiol. 1980 Jun;303:153–163. doi: 10.1113/jphysiol.1980.sp013277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christoffersen C. R., Skibsted L. H. Calcium ion activity in physiological salt solutions: influence of anions substituted for chloride. Comp Biochem Physiol A Comp Physiol. 1975 Oct 1;52(2):317–322. doi: 10.1016/s0300-9629(75)80094-6. [DOI] [PubMed] [Google Scholar]
  4. Dörrscheidt-Käfer M. The action of Ca2+ , Mg2+ and H+ on the contraction threshold of frog skeletal muscle: Evidence for surface charges controlling electro-mechanical coupling. Pflugers Arch. 1976 Mar 11;362(1):33–41. doi: 10.1007/BF00588678. [DOI] [PubMed] [Google Scholar]
  5. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gutknecht J., Walter A. SCN-and HSCN transport through lipid bilayer membranes. A model for SCN- inhibition of gastric acid secretion. Biochim Biophys Acta. 1982 Mar 8;685(3):233–240. doi: 10.1016/0005-2736(82)90062-1. [DOI] [PubMed] [Google Scholar]
  7. HASHIMURA S., OSA T. The effect of nitrate and thiocyanate ions on the resting and action potentials of cobalt-treated single node of Ranvier. Jpn J Physiol. 1963 Jun 15;13:219–230. doi: 10.2170/jjphysiol.13.219. [DOI] [PubMed] [Google Scholar]
  8. HILL A. V., MACPHERSON L. The effect of nitrate, iodide and bromide on the duration of the active state in skeletal muscle. Proc R Soc Lond B Biol Sci. 1954 Dec 15;143(910):81–102. doi: 10.1098/rspb.1954.0055. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., HOROWICZ P. The effect of nitrate and other anions on the mechanical response of single muscle fibres. J Physiol. 1960 Sep;153:404–412. doi: 10.1113/jphysiol.1960.sp006542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HOROWICZ P. THE EFFECTS OF ANIONS ON EXCITABLE CELLS. Pharmacol Rev. 1964 Jun;16:193–221. [PubMed] [Google Scholar]
  14. HUTTER O. F., PADSHA S. M. Effect of nitrate and other anions on the membrane resistance of frog skeletal muscle. J Physiol. 1959 Apr 23;146(1):117–132. doi: 10.1113/jphysiol.1959.sp006182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hamabata A., Chang S., Von Hippel P. H. Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. IV. Properties of fatty acid amide micelles. Biochemistry. 1973 Mar 27;12(7):1278–1282. doi: 10.1021/bi00731a006. [DOI] [PubMed] [Google Scholar]
  16. Hille B., Campbell D. T. An improved vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol. 1976 Mar;67(3):265–293. doi: 10.1085/jgp.67.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
  19. KAHN A. J., SANDOW A. The potentiation of muscular contraction by the nitrate-ion. Science. 1950 Dec 1;112(2918):647–649. doi: 10.1126/science.112.2918.647. [DOI] [PubMed] [Google Scholar]
  20. Kao C. Y., Stanfield P. R. Actions of some anions on electrical properties and mechanical threshold of frog twitch muscle. J Physiol. 1968 Sep;198(2):291–309. doi: 10.1113/jphysiol.1968.sp008607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kenyon J. L., Gibbons W. R. Effects of low-chloride solutions on action potentials of sheep cardiac Purkinje fibers. J Gen Physiol. 1977 Nov;70(5):635–660. doi: 10.1085/jgp.70.5.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McLaughlin S., Bruder A., Chen S., Moser C. Chaotropic anions and the surface potential of bilayer membranes. Biochim Biophys Acta. 1975 Jun 25;394(2):304–313. doi: 10.1016/0005-2736(75)90267-9. [DOI] [PubMed] [Google Scholar]
  23. McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mozhayeva G. N., Naumov A. P. Effect of surface charge on the steady-state potassium conductance of nodal membrane. Nature. 1970 Oct 10;228(5267):164–165. doi: 10.1038/228164a0. [DOI] [PubMed] [Google Scholar]
  25. Nonner W., Spalding B. C., Hille B. Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle. Nature. 1980 Mar 27;284(5754):360–363. doi: 10.1038/284360a0. [DOI] [PubMed] [Google Scholar]
  26. OHNISHI T., EBASHI S. SPECTROPHOTOMETRICAL MEASUREMENT OF INSTANTANEOUS CALCIUM BINDING OF THE RELAXING FACTOR OF MUSCLE. J Biochem. 1963 Dec;54:506–511. doi: 10.1093/oxfordjournals.jbchem.a127823. [DOI] [PubMed] [Google Scholar]
  27. Pollard H. B., Ceutz C. E., Pazoles C. J., Hansen J. Calcium binding properties of monovalent anions commonly used to substitute for chloride in physiological salt solutions. Anal Biochem. 1977 Nov;83(1):311–314. doi: 10.1016/0003-2697(77)90540-1. [DOI] [PubMed] [Google Scholar]
  28. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  29. SCATCHARD G., BLACK E. S. The effect of salts on the isoionic and isoelectric points of proteins. J Phys Colloid Chem. 1949 Jan;53(1):88–99. [PubMed] [Google Scholar]
  30. Tasaki I., Singer I., Takenaka T. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J Gen Physiol. 1965 Jul;48(6):1095–1123. doi: 10.1085/jgp.48.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES