Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1983 Feb 1;81(2):283–304. doi: 10.1085/jgp.81.2.283

Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method

PMCID: PMC2215571  PMID: 6842175

Abstract

Human red cell permeability to the homologous series of methanol, ethanol, n-propanol, n-butanol, and n-hexanol was determined in tracer efflux experiments by the continuous flow tube method, whose time resolution is 2-3 ms. Control experiments showed that unstirred layers in the cell suspension were less than 2 X 10(-4) cm, and that permeabilities less than or equal to 10(-2) cm s-1 can be determined with the method. Alcohol permeability varied with the chain length (25 degrees C): Pmeth 3.7 X 10(-3) cm s-1, Peth 2.1 X 10(-3) cm s-1, Pprop 6.5 X 10(-3) cm s-1, Pbut less than or equal to 61 X 10(-3) cm s-1, Phex 8.7 X 10(-3) cm s-1. The permeability for methanol, ethanol, and n- propanol was concentration independent (1-500 mM). The permeability to n-butanol and n-hexanol, however, increased above the upper limit of determination at alcohol concentrations of 100 and 25 mM, respectively. The activation energies for the permeability to methanol, n-propanol, and n-hexanol were similar, 50-63 kJ mol-1. Methanol permeability was not reduced by p-chloromercuribenzene sulfonate (PCMBS), thiourea, or phloretin, which inhibit transport of water or hydrophilic nonelectrolytes. It is concluded (a) that all the alcohols predominantly permeate the membrane lipid bilayer structure; (b) that both the distribution coefficient and the diffusion coefficient of the alcohols within the membrane determine the permeability, and (c) that the relative importance of the two factors varies with changes in the chain length.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bindslev N., Wright E. M. Effect of temperature on nonelectrolyte permeation across the toad urinary bladder. J Membr Biol. 1976 Nov 22;29(3):265–288. doi: 10.1007/BF01868966. [DOI] [PubMed] [Google Scholar]
  3. Brahm J. Diffusional water permeability of human erythrocytes and their ghosts. J Gen Physiol. 1982 May;79(5):791–819. doi: 10.1085/jgp.79.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brahm J., Wieth J. O. Separative pathways for urea and water, and for chloride in chicken erythrocytes. J Physiol. 1977 Apr;266(3):727–749. doi: 10.1113/jphysiol.1977.sp011790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen B. E. The permeability of liposomes to nonelectrolytes. I. Activation energies for permeation. J Membr Biol. 1975;20(3-4):205–234. doi: 10.1007/BF01870637. [DOI] [PubMed] [Google Scholar]
  7. Farmer R. E., Macey R. I. Perturbation of red cell volume: rectification of osmotic flow. Biochim Biophys Acta. 1970 Jan 6;196(1):53–65. doi: 10.1016/0005-2736(70)90165-3. [DOI] [PubMed] [Google Scholar]
  8. Fettiplace R., Haydon D. A. Water permeability of lipid membranes. Physiol Rev. 1980 Apr;60(2):510–550. doi: 10.1152/physrev.1980.60.2.510. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A. Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol. 1976 Aug;68(2):127–135. doi: 10.1085/jgp.68.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Funder J., Wieth J. O. Determination of sodium, potassium, and water in human red blood cells. Elimination of sources of error in the development of a flame photometric method. Scand J Clin Lab Invest. 1966;18(2):151–166. doi: 10.3109/00365516609051811. [DOI] [PubMed] [Google Scholar]
  11. Gad-El-Hak M., Morton J. B., Kutchal H. Turbulent flow of red cells in dilute suspensions. Effect on kinetics of O2 uptake. Biophys J. 1977 Jun;18(3):289–300. doi: 10.1016/S0006-3495(77)85614-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galey W. R., Owen J. D., Solomon A. K. Temperature dependence of nonelectrolyte permeation across red cell membranes. J Gen Physiol. 1973 Jun;61(6):727–746. doi: 10.1085/jgp.61.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garrick R. A., Patel B. C., Chinard F. P. Erythrocyte permeability to lipophilic solutes changes with temperature. Am J Physiol. 1982 Jan;242(1):C74–C80. doi: 10.1152/ajpcell.1982.242.1.C74. [DOI] [PubMed] [Google Scholar]
  14. Garrick R. A., Patel B. C., Chinard F. P. Permeability of dog erythrocytes to lipophilic molecules: solubility and volume effects. Am J Physiol. 1980 Mar;238(3):C107–C113. doi: 10.1152/ajpcell.1980.238.3.C107. [DOI] [PubMed] [Google Scholar]
  15. Gutknecht J., Tosteson D. C. Ionic peremability of thin lipid membranes. Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine. J Gen Physiol. 1970 Mar;55(3):359–374. doi: 10.1085/jgp.55.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holz R., Finkelstein A. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol. 1970 Jul;56(1):125–145. doi: 10.1085/jgp.56.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaplan M. A., Hays L., Hays R. M. Evolution of a facilitated diffusion pathway for amides in the erythrocyte. Am J Physiol. 1974 Jun;226(6):1327–1332. doi: 10.1152/ajplegacy.1974.226.6.1327. [DOI] [PubMed] [Google Scholar]
  18. Kaplan M. A., Hays R. M., Blumenfeld O. O. Membrane proteins and urea and acetamide transport in the human erythrocyte. J Membr Biol. 1975;20(1-2):181–190. doi: 10.1007/BF01870635. [DOI] [PubMed] [Google Scholar]
  19. Lieb W. R., Stein W. D. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes. Nature. 1969 Oct 18;224(5216):240–243. doi: 10.1038/224240a0. [DOI] [PubMed] [Google Scholar]
  20. Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
  21. Macey R. I., Karan D. M., Farmer R. E. Properties of water channels in human red cells. Biomembranes. 1972;3:331–340. doi: 10.1007/978-1-4684-0961-1_22. [DOI] [PubMed] [Google Scholar]
  22. Naccache P., Sha'afi R. I. Effect of PCMBS on water transfer across biological membranes. J Cell Physiol. 1974 Jun;83(3):449–456. doi: 10.1002/jcp.1040830316. [DOI] [PubMed] [Google Scholar]
  23. Naccache P., Sha'afi R. I. Patterns of nonelectrolyte permeability in human red blood cell membrane. J Gen Physiol. 1973 Dec;62(6):714–736. doi: 10.1085/jgp.62.6.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Orbach E., Finkelstein A. The nonelectrolyte permeability of planar lipid bilayer membranes. J Gen Physiol. 1980 Apr;75(4):427–436. doi: 10.1085/jgp.75.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Owen J. D., Solomon A. K. Control of nonelectrolyte permeability in red cells. Biochim Biophys Acta. 1972 Dec 1;290(1):414–418. doi: 10.1016/0005-2736(72)90087-9. [DOI] [PubMed] [Google Scholar]
  26. Owen J. D., Steggall M., Eyring E. M. The effect of phloretin on red cell nonelectrolyte permeability. J Membr Biol. 1974;19(1):79–92. doi: 10.1007/BF01869971. [DOI] [PubMed] [Google Scholar]
  27. PAGANELLI C. V., SOLOMON A. K. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957 Nov 20;41(2):259–277. doi: 10.1085/jgp.41.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. PIIPER J. GESCHWINDIGKEIT DES CO2-AUSTAUSCHES ZWISCHEN ERYTHROCYTEN UND PLASMA. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;278:500–512. [PubMed] [Google Scholar]
  29. Poznansky M., Tong S., White P. C., Milgram J. M., Solomon A. K. Nonelectrolyte diffusion across lipid bilayer systems. J Gen Physiol. 1976 Jan;67(1):45–66. doi: 10.1085/jgp.67.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Price H. D., Thompson T. E. Properties of liquid bilayer membranes separating two aqueous phases: temperature dependence of water permeability. J Mol Biol. 1969 May 14;41(3):443–457. doi: 10.1016/0022-2836(69)90287-3. [DOI] [PubMed] [Google Scholar]
  31. Redwood W. R., Haydon D. A. Influence of temperature and membrane composition on the water permeability of lipid bilayers. J Theor Biol. 1969 Jan;22(1):1–8. doi: 10.1016/0022-5193(69)90075-7. [DOI] [PubMed] [Google Scholar]
  32. Savitz D., Solomon A. K. Tracer determinations of human red cell membrane permeability to small nonelectrolytes. J Gen Physiol. 1971 Sep;58(3):259–266. doi: 10.1085/jgp.58.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  34. Sha'afi R. I., Gary-Bobo C. M., Solomon A. K. Permeability of red cell membranes to small hydrophilic and lipophilic solutes. J Gen Physiol. 1971 Sep;58(3):238–258. doi: 10.1085/jgp.58.3.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sha'afi R. I., Gary-Bobo C. M. Water and nonelectrolytes permeability in mammalian red cell membranes. Prog Biophys Mol Biol. 1973;26:103–146. doi: 10.1016/0079-6107(73)90018-7. [DOI] [PubMed] [Google Scholar]
  36. Sha'afi R. I., Rich G. T., Sidel V. W., Bossert W., Solomon A. K. The effect of the unstirred layer on human red cell water permeability. J Gen Physiol. 1967 May;50(5):1377–1399. doi: 10.1085/jgp.50.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  38. Wilbers K. H., Haest C. W., von Bentheim M., Deuticke B. Influence of enzymatic phospholipid cleavage on the permeability of the erythrocyte membrane. I. Transport of non-electrolytes via the lipid domain. Biochim Biophys Acta. 1979 Jul 5;554(2):388–399. doi: 10.1016/0005-2736(79)90379-1. [DOI] [PubMed] [Google Scholar]
  39. Wolosin J. M., Ginsburg H., Lieb W. R., Stein W. D. Diffusion within egg lecithin bilayers resembles that within soft polymers. J Gen Physiol. 1978 Jan;71(1):93–100. doi: 10.1085/jgp.71.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES