Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1983 Mar 1;81(3):305–323. doi: 10.1085/jgp.81.3.305

Effect of sea anemone toxins on the sodium inactivation process in crayfish axons

PMCID: PMC2215576  PMID: 6132957

Abstract

The effect of sea anemone toxins from Parasicyonis actinostoloides and Anemonia sulcata on the Na conductance in crayfish giant axons was studied under voltage-clamp conditions. The toxin slowed the Na inactivation process without changing the kinetics of Na activation or K activation in an early stage of the toxin effect. An analysis of the Na current profile during the toxin treatment suggested an all-or-none modification of individual Na channels. Toxin-modified Na channels were partially inactivated with a slower time course than that of the normal inactivation. This slow inactivation in steady state decreased in its extent as the membrane was depolarized to above -45 mV, so that practically no inactivation occurred at the membrane potentials as high as +50 mV. In addition to inhibition of the normal Na inactivation, prolonged toxin treatment induced an anomalous closing in a certain population of Na channels, indicated by very slow components of the Na tail current. The observed kinetic natures of toxin-modified Na channels were interpreted based on a simple scheme which comprised interconversions between functional states of Na channels. The voltage dependence of Parasicyonis toxin action, in which depolarization caused a suppression in development of the toxin effect, was also investigated.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barhanin J., Hugues M., Schweitz H., Vincent J. P., Lazdunski M. Structure-function relationships of sea anemone toxin II from Anemonia sulcata. J Biol Chem. 1981 Jun 10;256(11):5764–5769. [PubMed] [Google Scholar]
  2. Bergman C., Dubois J. M., Rojas E., Rathmayer W. Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim Biophys Acta. 1976 Nov 11;455(1):173–184. doi: 10.1016/0005-2736(76)90162-0. [DOI] [PubMed] [Google Scholar]
  3. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catterall W. A. Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation of voltage-dependent binding with activation. J Gen Physiol. 1979 Sep;74(3):375–391. doi: 10.1085/jgp.74.3.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Catterall W. A. Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalyzed iodination. J Biol Chem. 1977 Dec 10;252(23):8660–8668. [PubMed] [Google Scholar]
  6. Conti F., Hille B., Neumcke B., Nonner W., Stämpfli R. Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation. J Physiol. 1976 Nov;262(3):729–742. doi: 10.1113/jphysiol.1976.sp011617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox J. M. Ultra-slow inactivation of the ionic currents through the membrane of myelinated nerve. Biochim Biophys Acta. 1976 Mar 5;426(2):232–244. doi: 10.1016/0005-2736(76)90334-5. [DOI] [PubMed] [Google Scholar]
  8. Frankenhaeuser B., Lindley B. D., Smith R. S. Potentiometric measurement of membrane action potentials in frog muscle fibres. J Physiol. 1966 Mar;183(1):152–166. doi: 10.1113/jphysiol.1966.sp007857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujita S., Warashina A. Parasicyonis toxin: effect on crayfish giant axon. Comp Biochem Physiol C. 1980;67C(1):71–74. doi: 10.1016/0306-4492(80)90060-x. [DOI] [PubMed] [Google Scholar]
  10. Gillespie J. I., Meves H. The effect of scorpion venoms on the sodium currents of the squid giant axon. J Physiol. 1980 Nov;308:479–499. doi: 10.1113/jphysiol.1980.sp013484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishikawa Y., Onodera K., Takeuchi A. Purification and effect of the neurotoxin from the sea anemone Parasicyonis actinostoloides. J Neurochem. 1979 Jul;33(1):69–73. doi: 10.1111/j.1471-4159.1979.tb11707.x. [DOI] [PubMed] [Google Scholar]
  13. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J Gen Physiol. 1962 Jul;45:1217–1238. doi: 10.1085/jgp.45.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meves H., Rubly N., Watt D. D. Effect of toxins isolated from the venom of the scorpion Centruroides sculpturatus on the Na currents of the node of Ranvier. Pflugers Arch. 1982 Mar;393(1):56–62. doi: 10.1007/BF00582392. [DOI] [PubMed] [Google Scholar]
  15. Moore J. W., Cox E. B. A kinetic model for the sodium conductance system in squid axon. Biophys J. 1976 Feb;16(2 Pt 1):171–192. doi: 10.1016/s0006-3495(76)85673-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mozhayeva G. N., Naumov A. P., Nosyreva E. D., Grishin E. V. Potential-dependent interaction of toxin from venom of the scorpion Buthus eupeus with sodium channels in myelinated fibre: voltage clamp experiments. Biochim Biophys Acta. 1980 Apr 24;597(3):587–602. doi: 10.1016/0005-2736(80)90230-8. [DOI] [PubMed] [Google Scholar]
  17. Narahashi T., Moore J. W., Shapiro B. I. Condylactis toxin: interaction with nerve membrane ionic conductances. Science. 1969 Feb 14;163(3868):680–681. doi: 10.1126/science.163.3868.680. [DOI] [PubMed] [Google Scholar]
  18. Narahashi T., Shapiro B. I., Deguchi T., Scuka M., Wang C. M. Effects of scorpion venom on squid axon membranes. Am J Physiol. 1972 Apr;222(4):850–857. doi: 10.1152/ajplegacy.1972.222.4.850. [DOI] [PubMed] [Google Scholar]
  19. Neumcke B., Schwarz W., Stämpfli R. Modification of sodium inactivation in myelinated nerve by Anemonia toxin II and iodate. Analysis of current fluctuations and current relaxations. Biochim Biophys Acta. 1980 Aug 4;600(2):456–466. doi: 10.1016/0005-2736(80)90448-4. [DOI] [PubMed] [Google Scholar]
  20. New W., Trautwein W. Inward membrane currents in mammalian myocardium. Pflugers Arch. 1972;334(1):1–23. doi: 10.1007/BF00585997. [DOI] [PubMed] [Google Scholar]
  21. Okamoto H. Binding of scorpion toxin to sodium channels in vitro and its modification by beta-bungarotoxin. J Physiol. 1980 Feb;299:507–520. doi: 10.1113/jphysiol.1980.sp013139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oxford G. S., Wu C. H., Narahashi T. Removal of sodium channel inactivation in squid giant axons by n-bromoacetamide. J Gen Physiol. 1978 Mar;71(3):227–247. doi: 10.1085/jgp.71.3.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pelhate M., Hue B., Sattelle D. B. Pharmacological properties of axonal sodium channels in the cockroach Periplaneta americana L. II. Slowing of sodium current turn-off by Condylactis toxin. J Exp Biol. 1979 Dec;83:49–58. doi: 10.1242/jeb.83.1.49. [DOI] [PubMed] [Google Scholar]
  24. Romey G., Abita J. P., Schweitz H., Wunderer G., Lazdunski Sea anemone toxin:a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4055–4059. doi: 10.1073/pnas.73.11.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Romey G., Chicheportiche R., Lazdunski M., Rochat H., Miranda F., Lissitzky S. Scorpion neurotoxin - a presynaptic toxin which affects both Na+ and K+ channels in axons. Biochem Biophys Res Commun. 1975 May 5;64(1):115–121. doi: 10.1016/0006-291x(75)90226-0. [DOI] [PubMed] [Google Scholar]
  26. Shrager P. Ionic conductance changes in voltage clamped crayfish axons at low pH. J Gen Physiol. 1974 Dec;64(6):666–690. doi: 10.1085/jgp.64.6.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stengelin S., Hucho F. Radioactive labelling of toxin I from Anemonia sulcata and binding to crayfish nerve in vitro. Hoppe Seylers Z Physiol Chem. 1980 Apr;361(4):577–585. doi: 10.1515/bchm2.1980.361.1.577. [DOI] [PubMed] [Google Scholar]
  28. Tamkun M. M., Catterall W. A. Reconstitution of the voltage-sensitive sodium channel of rat brain from solubilized components. J Biol Chem. 1981 Nov 25;256(22):11457–11463. [PubMed] [Google Scholar]
  29. Vincent J. P., Balerna M., Barhanin J., Fosset M., Lazdunski M. Binding of sea anemone toxin to receptor sites associated with gating system of sodium channel in synaptic nerve endings in vitro. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1646–1650. doi: 10.1073/pnas.77.3.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Warashina A., Fujita S., Satake M. Potential-dependent effects of sea anemone toxins and scorpion venom on crayfish giant axon. Pflugers Arch. 1981 Oct;391(4):273–276. doi: 10.1007/BF00581506. [DOI] [PubMed] [Google Scholar]
  31. Yeh J. Z., Oxford G. S., Wu C. H., Narahashi T. Dynamics of aminopyridine block of potassium channels in squid axon membrane. J Gen Physiol. 1976 Nov;68(5):519–535. doi: 10.1085/jgp.68.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES