Abstract
The red cell anion transport protein, band 3, can be selectively modified with phenylglyoxal, which modifies arginyl residues (arg) in proteins, usually with a phenylglyoxal: arg stoichiometry of 2:1. Indiscriminate modification of all arg in red cell membrane proteins occurred rapidly when both extra- and intracellular pH were above 10. Selective modification of extracellularly exposed arg was achieved when ghosts with a neutral or acid intracellular pH were treated with phenylglyoxal in an alkaline medium. The rate and specificity of modification depend on the extracellular chloride concentration. At 165 mM chloride maximum transport inactivation was accompanied by the binding of four phenylglyoxals per band 3 molecule. After removal of extracellular chloride, maximum transport inhibition was accompanied by the incorporation of two phenylglyoxals per band 3, which suggests that transport function is inactivated by the modification of a single arg. After cleavage of band 3 with extracellular chymotrypsin, [14C]phenylglyoxal was located almost exclusively in a 35,000-dalton peptide. In contrast, the primary covalent binding site of the isothiocyanostilbenedisulfonates is a lysyl residue in the second cleavage product, a 65,000-dalton fragment. This finding supports the view that the transport region of band 3 is composed of strands from both chymotryptic fragments. The binding of phenylglyoxal and the stilbene inhibitors interfered with each other. The rate of phenylglyoxal binding was reduced by a reversibly binding stilbenedisulfonate (DNDS), and covalent binding of [3H]DIDS to phenylglyoxal-modified membranes was strongly delayed. At DIDS concentrations below 10 10 micrometers, only 50% of the band 3 molecules were labeled with [3H]-DIDS during 90 min at 38 degrees C, thereby demonstrating an interaction between binding of the two inhibitors to the protomers of the oligomeric band 3 molecules.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong V. W., Sternbach H., Eckstein F. Modification of an essential arginine in Escherichia coli DNA-dependent RNA polymerase. FEBS Lett. 1976 Nov;70(1):48–50. doi: 10.1016/0014-5793(76)80723-5. [DOI] [PubMed] [Google Scholar]
- Berghäuser J. A reactive arginine in adenylate kinase. Biochim Biophys Acta. 1975 Aug 26;397(2):370–376. doi: 10.1016/0005-2744(75)90126-6. [DOI] [PubMed] [Google Scholar]
- Bjerrum O. J., Hawkins M., Swanson P., Griffin M., Lorand L. An immunochemical approach for the analysis of membrane protein alterations in Ca2+-loaded human erythrocytes. J Supramol Struct Cell Biochem. 1981;16(3):289–301. doi: 10.1002/jsscb.1981.380160309. [DOI] [PubMed] [Google Scholar]
- Borders C. L., Jr, Johansen J. T. Identification of Arg-143 as the essential arginyl residue in yeast Cu,Zn superoxide dismutase by use of a chromophoric arginine reagent. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1071–1078. doi: 10.1016/0006-291x(80)90061-3. [DOI] [PubMed] [Google Scholar]
- Borders C. L., Jr, Pearson L. J., McLaughlin A. E., Gustafson M. E., Vasiloff J., An F. Y., Morgan D. J. 4-Hydroxy-3-nitrophenylglyoxal. A chromophoric reagent for arginyl residues in proteins. Biochim Biophys Acta. 1979 Jun 6;568(2):491–495. doi: 10.1016/0005-2744(79)90319-x. [DOI] [PubMed] [Google Scholar]
- Borders C. L., Jr, Riordan J. F. An essential arginyl residue at the nucleotide binding site of creatine kinase. Biochemistry. 1975 Oct 21;14(21):4699–4704. doi: 10.1021/bi00692a021. [DOI] [PubMed] [Google Scholar]
- Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
- Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J Membr Biol. 1974;15(3):227–248. doi: 10.1007/BF01870089. [DOI] [PubMed] [Google Scholar]
- Cheung S. T., Fonda M. L. Kinetics of the inactivation of Escherichia coli glutamate apodecarboxylase by phenylglyoxal. Arch Biochem Biophys. 1979 Dec;198(2):541–547. doi: 10.1016/0003-9861(79)90529-0. [DOI] [PubMed] [Google Scholar]
- Cheung S. T., Fonda M. L. Reaction of phenylglyoxal with arginine. The effect of buffers and pH. Biochem Biophys Res Commun. 1979 Oct 12;90(3):940–947. doi: 10.1016/0006-291x(79)91918-1. [DOI] [PubMed] [Google Scholar]
- DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- Dalmark M. Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol. 1976 Feb;67(2):223–234. doi: 10.1085/jgp.67.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix J. A., Verkman A. S., Solomon A. K., Cantley L. C. Human erythrocyte anion exchange site characterised using a fluorescent probe. Nature. 1979 Nov 29;282(5738):520–522. doi: 10.1038/282520a0. [DOI] [PubMed] [Google Scholar]
- Dorst H. J., Schubert D. Self-association of band-protein from human erythrocyte membranes in aqueous solutions. Hoppe Seylers Z Physiol Chem. 1979 Nov;360(11):1605–1618. doi: 10.1515/bchm2.1979.360.2.1605. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Funder J., Tosteson D. C., Wieth J. O. Effects of bicarbonate on lithium transport in human red cells. J Gen Physiol. 1978 Jun;71(6):721–746. doi: 10.1085/jgp.71.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golovtchenko-Matsumoto A. M., Osawa T. Heterogeneity of Band 3, the major intrinsic protein of human erythrocyte membranes. Studies by crossed immunoelectrophoresis and crossed immuno-affinoelectrophoresis. J Biochem. 1980 Mar;87(3):847–854. doi: 10.1093/oxfordjournals.jbchem.a132815. [DOI] [PubMed] [Google Scholar]
- Gunn R. B., Fröhlich O. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol. 1979 Sep;74(3):351–374. doi: 10.1085/jgp.74.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings M. L., Passow H. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonate. Biochim Biophys Acta. 1979 Jul 5;554(2):498–519. doi: 10.1016/0005-2736(79)90387-0. [DOI] [PubMed] [Google Scholar]
- Jennings M. L. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J Gen Physiol. 1982 Feb;79(2):169–185. doi: 10.1085/jgp.79.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ji T. H. Interference by detergents, chelating agents, and buffers with the Lowry protein determination. Anal Biochem. 1973 Apr;52(2):517–521. doi: 10.1016/0003-2697(73)90056-0. [DOI] [PubMed] [Google Scholar]
- Jones M. N., Nickson J. K. Monosaccharide transport proteins of the human erythrocyte membrane. Biochim Biophys Acta. 1981 Jun 16;650(1):1–20. doi: 10.1016/0304-4157(81)90006-x. [DOI] [PubMed] [Google Scholar]
- Kantrowitz E. R., Lipscomb W. N. An essential residue at the active site of aspartate transcarbamylase. J Biol Chem. 1976 May 10;251(9):2688–2695. [PubMed] [Google Scholar]
- Kazarinoff M. N., Snell E. E. D-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site. J Biol Chem. 1976 Oct 25;251(20):6179–6182. [PubMed] [Google Scholar]
- Kempf C., Brock C., Sigrist H., Tanner M. J., Zahler P. Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. II. Topology of phenylisothiocyanate binding sites and influence of p-sulfophenylisothiocyanate on phenylisothiocyanate modification. Biochim Biophys Acta. 1981 Feb 20;641(1):88–98. doi: 10.1016/0005-2736(81)90571-x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lepke S., Fasold H., Pring M., Passow H. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). J Membr Biol. 1976 Oct 20;29(1-2):147–177. doi: 10.1007/BF01868957. [DOI] [PubMed] [Google Scholar]
- Macara I. G., Cantley L. C. Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry. 1981 Sep 1;20(18):5095–5105. doi: 10.1021/bi00521a001. [DOI] [PubMed] [Google Scholar]
- Macara I. G., Cantley L. C. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites. Biochemistry. 1981 Sep 29;20(20):5695–5701. doi: 10.1021/bi00523a009. [DOI] [PubMed] [Google Scholar]
- Marchesi V. T. Spectrin: present status of a putative cyto-skeletal protein of the red cell membrane. J Membr Biol. 1979 Dec 14;51(2):101–131. doi: 10.1007/BF01869164. [DOI] [PubMed] [Google Scholar]
- Passow H., Fasold H., Gärtner E. M., Legrum B., Ruffing W., Zaki L. Anion transport across the red blood cell membrane and the conformation of the protein in Band 3. Ann N Y Acad Sci. 1980;341:361–383. doi: 10.1111/j.1749-6632.1980.tb47184.x. [DOI] [PubMed] [Google Scholar]
- Patthy L., Smith E. L. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues. J Biol Chem. 1975 Jan 25;250(2):557–564. [PubMed] [Google Scholar]
- Peterson G. L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem. 1979 Dec;100(2):201–220. doi: 10.1016/0003-2697(79)90222-7. [DOI] [PubMed] [Google Scholar]
- Philips M., Pho D. B., Pradel L. A. An essential arginyl residue in yeast hexokinase. Biochim Biophys Acta. 1979 Feb 9;566(2):296–304. doi: 10.1016/0005-2744(79)90033-0. [DOI] [PubMed] [Google Scholar]
- Powers S. G., Riordan J. F. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2616–2620. doi: 10.1073/pnas.72.7.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramjeesingh M., Gaarn A., Rothstein A. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) with band 3 protein from human red blood cell membranes. Biochim Biophys Acta. 1981 Feb 20;641(1):173–182. doi: 10.1016/0005-2736(81)90581-2. [DOI] [PubMed] [Google Scholar]
- Ramjeesingh M., Gaarn A., Rothstein A. The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane. Biochim Biophys Acta. 1980 Jun 20;599(1):127–139. doi: 10.1016/0005-2736(80)90062-0. [DOI] [PubMed] [Google Scholar]
- Riordan J. F. Arginyl residues and anion binding sites in proteins. Mol Cell Biochem. 1979 Jul 31;26(2):71–92. doi: 10.1007/BF00232886. [DOI] [PubMed] [Google Scholar]
- Riordan J. F. Functional arginyl residues in carboxypeptidase A. Modification with butanedione. Biochemistry. 1973 Sep 25;12(20):3915–3923. doi: 10.1021/bi00744a020. [DOI] [PubMed] [Google Scholar]
- Riordan J. F., McElvany K. D., Borders C. L., Jr Arginyl residues: anion recognition sites in enzymes. Science. 1977 Mar 4;195(4281):884–886. doi: 10.1126/science.190679. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Guidotti G. The protein of human erythrocyte membranes. I. Preparation, solubilization, and partial characterization. J Biol Chem. 1968 Apr 25;243(8):1985–1992. [PubMed] [Google Scholar]
- Ship S., Shami Y., Breuer W., Rothstein A. Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J Membr Biol. 1977 May 12;33(3-4):311–323. doi: 10.1007/BF01869522. [DOI] [PubMed] [Google Scholar]
- Steck T. L. Cross-linking the major proteins of the isolated erythrocyte membrane. J Mol Biol. 1972 May 14;66(2):295–305. doi: 10.1016/0022-2836(72)90481-0. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Koziarz J. J., Singh M. K., Reddy G., Köhler H. Preparation and analysis of seven major, topographically defined fragments of band 3, the predominant transmembrane polypeptide of human erythrocyte membranes. Biochemistry. 1978 Apr 4;17(7):1216–1222. doi: 10.1021/bi00600a013. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]
- Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem. 1968 Dec 10;243(23):6171–6179. [PubMed] [Google Scholar]
- Vandenbunder B., Dreyfus M., Bertrand O., Dognin M. J., Sibilli L., Buc H. Mechanism of allosteric activation of glycogen phosphorylase probed by the reactivity of essential arginine residues. Identification of an arginine residue involved in the binding of glucose 1-phosphate. Biochemistry. 1981 Apr 14;20(8):2354–2360. doi: 10.1021/bi00511a044. [DOI] [PubMed] [Google Scholar]
- WEED R. I., REED C. F., BERG G. Is hemoglobin an essential structural component of human erythrocyte membranes? J Clin Invest. 1963 Apr;42:581–588. doi: 10.1172/JCI104747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieth J. O., Andersen O. S., Brahm J., Bjerrum P. J., Borders C. L., Jr Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):383–399. doi: 10.1098/rstb.1982.0139. [DOI] [PubMed] [Google Scholar]
- Wieth J. O., Bjerrum P. J., Borders C. L., Jr Irreversible inactivation of red cell chloride exchange with phenylglyoxal, and arginine-specific reagent. J Gen Physiol. 1982 Feb;79(2):283–312. doi: 10.1085/jgp.79.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieth J. O., Bjerrum P. J., Brahm J., Andersen O. S. The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange. Tokai J Exp Clin Med. 1982;7 (Suppl):91–101. [PubMed] [Google Scholar]
- Wieth J. O., Bjerrum P. J. Titration of transport and modifier sites in the red cell anion transport system. J Gen Physiol. 1982 Feb;79(2):253–282. doi: 10.1085/jgp.79.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaki L. Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Biochem Biophys Res Commun. 1981 Mar 16;99(1):243–251. doi: 10.1016/0006-291x(81)91738-1. [DOI] [PubMed] [Google Scholar]