Abstract
Increasing free intracellular Ca (Cai) from less than 0.1 microM to 10 microM by means of A23187 activated Ca-stimulated K transport and inhibited the Na-K pump in resealed human red cell ghosts. These ghosts contained 2 mM ATP, which was maintained by a regenerating system, and arsenazo III to measure Cai. Ca-stimulated K transport was activated 50% at 2-3 microM free Cai and the Na-K pump was inhibited 50% by 5-10 microM free Cai. Free Cai from 1 to 8 microM stimulated K efflux before it inhibited the Na-K pump, dissociating the effect of Ca on the two systems. 3 microM trifluoperazine inhibited Ca-stimulated K efflux and 0.5 mM quinidine reduced Na-K pumping by 50%. In other studies, incubating fresh intact cells in solutions containing Ca and 0.5 microM A23187 caused the cells to lose K heterogeneously. Under the same conditions, increasing A23187 to 10 microM initiated a homogeneous loss of K. In ATP-deficient ghosts containing Cai equilibrated with A23187, K transport was activated at the same free Cai as in the ghosts containing 2 mM ATP. Neither Cao nor the presence of an inward Ca gradient altered the effect of free Cai on the permeability to K. In these ghosts, transmembrane interactions of Na and K influenced the rate of Ca-stimulated K efflux independent of Na- and K-induced changes in free Cai or sensitivity to Cai. At constant free Cai, increasing Ko from 0.1 to 3 mM stimulated K efflux, whereas further increasing Ko inhibited it. Increasing Nai at constant Ki and free Cai markedly decreased the rate of efflux at 2 mM Ko, but had no effect when Ko was greater than or equal to 20 mM. These transmembrane interactions indicate that the mechanism underlying Ca-stimulated K transport is mediated. Since these interactions from either side of the membrane are independent of free Cai, activation of the transport mechanism by Cai must be at a site that is independent of those responsible for the interaction of Na and K. In the presence of A23187, this activating site is half-maximally stimulated by approximately 2 microM free Ca and is not influenced by the concentration of ATP. The partial inhibition of Ca-stimulated K efflux by trifluoperazine in ghosts containing ATP suggests that calmodulin could be involved in the activation of K transport by Cai.(ABSTRACT TRUNCATED AT 400 WORDS)
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blum R. M., Hoffman J. F. Ca-induced K transport in human red cells: localization of the Ca-sensitive site to the inside of the membrane. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1146–1152. doi: 10.1016/s0006-291x(72)80094-9. [DOI] [PubMed] [Google Scholar]
- Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol. 1972;8(1):1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
- Brown A. M., Ellory J. C., Young J. D., Lew V. L. A calcium-activated potassium channel present in foetal red cells of the sheep but absent from reticulocytes and mature red cells. Biochim Biophys Acta. 1978 Aug 4;511(2):163–175. doi: 10.1016/0005-2736(78)90311-5. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
- Dunn M. J. Red blood cell calcium and magnesium: effects upon sodium and potassium transport and cellular morphology. Biochim Biophys Acta. 1974 May 30;352(1):97–116. doi: 10.1016/0005-2736(74)90182-5. [DOI] [PubMed] [Google Scholar]
- GARDOS G. Effect of ethylenediaminetetraacetate on the permeability of human erythrocytes. Acta Physiol Acad Sci Hung. 1958;14(1):1–5. [PubMed] [Google Scholar]
- Gietzen K., Mansard A., Bader H. Inhibition of human erythrocyte Ca++-transport ATPase by phenothiazines and butyrophenones. Biochem Biophys Res Commun. 1980 May 30;94(2):674–681. doi: 10.1016/0006-291x(80)91285-1. [DOI] [PubMed] [Google Scholar]
- Glynn I. M., Hoffman J. F. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J Physiol. 1971 Oct;218(1):239–256. doi: 10.1113/jphysiol.1971.sp009612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Warner A. E. Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug's antiarrhythmic effect. Br J Pharmacol. 1972 Feb;44(2):271–278. doi: 10.1111/j.1476-5381.1972.tb07263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gárdos G., Szász I., Sarkadi B. Effect of intracellular calcium on the cation transport processes in human red cells. Acta Biol Med Ger. 1977;36(5-6):823–829. [PubMed] [Google Scholar]
- HOFFMAN J. F. Cation transport and structure of the red-cell plasma membrane. Circulation. 1962 Nov;26:1202–1213. doi: 10.1161/01.cir.26.5.1201. [DOI] [PubMed] [Google Scholar]
- HOFFMAN J. F. Physiological characteristics of human red blood cell ghosts. J Gen Physiol. 1958 Sep 20;42(1):9–28. doi: 10.1085/jgp.42.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinz A., Passow H. Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. J Membr Biol. 1980 Dec 15;57(2):119–131. doi: 10.1007/BF01868998. [DOI] [PubMed] [Google Scholar]
- Hoffman J. F., Blum R. M. On the nature of the transport pathway used for Ca-dependent K movement in human red blood cells. Adv Exp Med Biol. 1977;84:381–405. doi: 10.1007/978-1-4684-3279-4_18. [DOI] [PubMed] [Google Scholar]
- Hunter M. J. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol. 1977 Jun;268(1):35–49. doi: 10.1113/jphysiol.1977.sp011845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauf P. A., Riordan J. R., Schuhmann B., Wood-Guth I., Passow H. Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts. J Membr Biol. 1975 Dec 4;25(1-2):1–22. doi: 10.1007/BF01868565. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M., Hoffman J. F. Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells. J Gen Physiol. 1972 Oct;60(4):406–429. doi: 10.1085/jgp.60.4.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lackington I., Orrego F. Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs. FEBS Lett. 1981 Oct 12;133(1):103–106. doi: 10.1016/0014-5793(81)80481-4. [DOI] [PubMed] [Google Scholar]
- Larsen F. L., Vincenzi F. F. Calcium transport across the plasma membrane: stimulation by calmodulin. Science. 1979 Apr 20;204(4390):306–309. doi: 10.1126/science.155309. [DOI] [PubMed] [Google Scholar]
- Lew V. L., Ferreira H. G. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes. Nature. 1976 Sep 23;263(5575):336–338. doi: 10.1038/263336a0. [DOI] [PubMed] [Google Scholar]
- Lowry K., Rao S. N., Pitts B. J., Askari A. Effects of quinidine on some reactions and ion translocations catalyzed by the Na+, K+ -ATPase complex. Biochem Pharmacol. 1973 Jun 1;22(11):1369–1377. doi: 10.1016/0006-2952(73)90310-9. [DOI] [PubMed] [Google Scholar]
- Miles P. R., Lee P. Sodium and potassium content and membrane transport properties in red blood cells from newborn puppies. J Cell Physiol. 1972 Jun;79(3):367–376. doi: 10.1002/jcp.1040790307. [DOI] [PubMed] [Google Scholar]
- Porzig H. Studies on the cation permeability of human red cell ghosts. Characterization and biological significance of two membrane sites with high affinities for Ca. J Membr Biol. 1977 Mar 23;31(4):317–349. doi: 10.1007/BF01869411. [DOI] [PubMed] [Google Scholar]
- Reed P. W. Effects of divalent cation ionophore A23187 on potassium permeability of rat erythrocytes. J Biol Chem. 1976 Jun 10;251(11):3489–3494. [PubMed] [Google Scholar]
- Richhardt H., Fuhrmann G. F., Knauf P. A. Dog red blood cells exhibit a Ca-stimulated increase in K permeability in the absence of (Na,K)ATPase activity. Nature. 1979 May 17;279(5710):248–250. doi: 10.1038/279248a0. [DOI] [PubMed] [Google Scholar]
- Roufogalis B. D. Phenothiazine antagonism of calmodulin: a structurally-nonspecific interaction. Biochem Biophys Res Commun. 1981 Feb 12;98(3):607–613. doi: 10.1016/0006-291x(81)91157-8. [DOI] [PubMed] [Google Scholar]
- Schatzman R. C., Wise B. C., Kuo J. F. Phospholipid-sensitive calcium-dependent protein kinase: inhibition by antipsychotic drugs. Biochem Biophys Res Commun. 1981 Feb 12;98(3):669–676. doi: 10.1016/0006-291x(81)91166-9. [DOI] [PubMed] [Google Scholar]
- Simons T. J. Calcium-dependent potassium exchange in human red cell ghosts. J Physiol. 1976 Mar;256(1):227–244. doi: 10.1113/jphysiol.1976.sp011322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss B., Levin R. M. Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents. Adv Cyclic Nucleotide Res. 1978;9:285–303. [PubMed] [Google Scholar]
- Yingst D. R., Hoffman J. F. Changes of intracellular Ca++ as measured by arsenazo III in relation to the K permeability of human erythrocyte ghosts. Biophys J. 1978 Sep;23(3):463–471. doi: 10.1016/S0006-3495(78)85462-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yingst D. R., Hoffman J. F. Intracellular free Ca and Mg of human red blood cell ghosts measured with entrapped arsenazo III. Anal Biochem. 1983 Jul 15;132(2):431–448. doi: 10.1016/0003-2697(83)90031-3. [DOI] [PubMed] [Google Scholar]
- Yingst D. R., Hoffman J. F. Passive Ca transport in human red blood cell ghosts measured with entrapped arsenazo III. J Gen Physiol. 1984 Jan;83(1):1–17. doi: 10.1085/jgp.83.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]