Abstract
Aggregates of heart cells from chicken embryos beat spontaneously. We used intracellular microelectrodes to record the periodic behavior of the membrane potential that triggers the contractions. Every 5-12 beats, a short current pulse was applied at various points in the cycle to study the phase-dependent resetting of the rhythm. Pulses stronger than 2.5 nA caused the final rhythm to be reset to almost the same point in the cycle regardless of the phase at which the pulse was applied (type zero resetting). Pulses of less than or equal to 1 nA only caused a slight change of the phase. Increasing current intensities to between 1 and 2.5 nA gave rise to an increasing steepness in a small part of the phase-response curve. The observation of type zero resetting implies the existence of a critical stimulation that might annihilate the rhythm. Although we did find a phase at which more or less random responses occurred, the longest pause in the rhythm was 758 ms, 2.4 times the spontaneous interval. This suggests that the resting membrane potential was unstable, at least against the internal noise of the system. The conclusions are discussed in terms of the concepts of classical cardiac electrophysiology.
Full Text
The Full Text of this article is available as a PDF (1,001.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson R. S., Cranefield P. F. The effect of resting potential on the electrical activity of canine cardiac Purkinje fibers exposed to Na-free solution or to ouabain. Pflugers Arch. 1974 Jan 11;347(2):101–116. doi: 10.1007/BF00592392. [DOI] [PubMed] [Google Scholar]
- Best E. N. Null space in the Hodgkin-Huxley Equations. A critical test. Biophys J. 1979 Jul;27(1):87–104. doi: 10.1016/S0006-3495(79)85204-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H. F. Electrophysiology of the sinoatrial node. Physiol Rev. 1982 Apr;62(2):505–530. doi: 10.1152/physrev.1982.62.2.505. [DOI] [PubMed] [Google Scholar]
- CIECIURA S. J., MARCUS P. I., PUCK T. T. Clonal growth in vitro of epithelial cells from normal human tissues. J Exp Med. 1956 Oct 1;104(4):615–628. doi: 10.1084/jem.104.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A. Repetitive responses in squid giant axons and their premature annihilation by additional brief depolarizing currents. Q J Exp Physiol Cogn Med Sci. 1980 Jan;65(1):1–7. doi: 10.1113/expphysiol.1980.sp002487. [DOI] [PubMed] [Google Scholar]
- Cranefield P. F. Action potentials, afterpotentials, and arrhythmias. Circ Res. 1977 Oct;41(4):415–423. doi: 10.1161/01.res.41.4.415. [DOI] [PubMed] [Google Scholar]
- Cranefield P. F., Aronson R. S. Initiation of sustained rhythmic activity by single propagated action potentials in canine cardiac Purkinje fibers exposed to sodium-free solution or to ouabain. Circ Res. 1974 Apr;34(4):477–481. doi: 10.1161/01.res.34.4.477. [DOI] [PubMed] [Google Scholar]
- DeHann R. L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev Biol. 1967 Sep;16(3):216–249. doi: 10.1016/0012-1606(67)90025-5. [DOI] [PubMed] [Google Scholar]
- Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Game C. J. BVP models: an adjustment to express a mechanism of inactivation. Biol Cybern. 1982;44(3):223–229. doi: 10.1007/BF00344278. [DOI] [PubMed] [Google Scholar]
- Guttman R., Lewis S., Rinzel J. Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol. 1980 Aug;305:377–395. doi: 10.1113/jphysiol.1980.sp013370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irisawa H. Comparative physiology of the cardiac pacemaker mechanism. Physiol Rev. 1978 Apr;58(2):461–498. doi: 10.1152/physrev.1978.58.2.461. [DOI] [PubMed] [Google Scholar]
- Jalife J., Antzelevitch C. Pacemaker annihilation: diagnostic and therapeutic implications. Am Heart J. 1980 Jul;100(1):128–130. doi: 10.1016/0002-8703(80)90289-6. [DOI] [PubMed] [Google Scholar]
- Jalife J., Antzelevitch C. Phase resetting and annihilation of pacemaker activity in cardiac tissue. Science. 1979 Nov 9;206(4419):695–697. doi: 10.1126/science.493975. [DOI] [PubMed] [Google Scholar]
- Jalife J., Hamilton A. J., Lamanna V. R., Moe G. K. Effects of current flow on pacemaker activity of the isolated kitten sinoatrial node. Am J Physiol. 1980 Mar;238(3):H307–H316. doi: 10.1152/ajpheart.1980.238.3.H307. [DOI] [PubMed] [Google Scholar]
- Jalife J., Moe G. K. Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ Res. 1976 Dec;39(6):801–808. doi: 10.1161/01.res.39.6.801. [DOI] [PubMed] [Google Scholar]
- McAllister R. E., Noble D., Tsien R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol. 1975 Sep;251(1):1–59. doi: 10.1113/jphysiol.1975.sp011080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs H. G., McDonald T. F., Springer M. Cytochalasin B and embryonic heart muscle: contractility, excitability and ultrastructure. J Cell Sci. 1974 Jan;14(1):163–185. doi: 10.1242/jcs.14.1.163. [DOI] [PubMed] [Google Scholar]
- WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winfree A. T. Integrated view of resetting a circadian clock. J Theor Biol. 1970 Sep;28(3):327–374. doi: 10.1016/0022-5193(70)90075-5. [DOI] [PubMed] [Google Scholar]
- Winfree A. T. Phase control of neural pacemakers. Science. 1977 Aug 19;197(4305):761–763. doi: 10.1126/science.887919. [DOI] [PubMed] [Google Scholar]
- Winfru A. T. Oscillatory glycolysis in yeast: the pattern of phase resetting by oxygen. Arch Biochem Biophys. 1972 Apr;149(2):388–401. doi: 10.1016/0003-9861(72)90337-2. [DOI] [PubMed] [Google Scholar]
- Wit A. L., Cranefield P. F. Triggered activity in cardiac muscle fibers of the simian mitral valve. Circ Res. 1976 Feb;38(2):85–98. doi: 10.1161/01.res.38.2.85. [DOI] [PubMed] [Google Scholar]
- Wit A. L., Cranefield P. F. Triggered and automatic activity in the canine coronary sinus. Circ Res. 1977 Oct;41(4):434–445. doi: 10.1161/01.res.41.4.434. [DOI] [PubMed] [Google Scholar]
