Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 May 1;83(5):683–701. doi: 10.1085/jgp.83.5.683

Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry

PMCID: PMC2215659  PMID: 6736916

Abstract

External N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) inhibits human red cell chloride exchange by binding to a site that is distinct from the chloride transport site. Increases in the intracellular chloride concentration (at constant external chloride) cause an increase in the inhibitory potency of external NAP-taurine. This effect is not due to the changes in pH or membrane potential that usually accompany a chloride gradient, since even when these changes are reversed or eliminated the inhibitory potency remains high. According to the ping-pong model for anion exchange, such transmembrane effects of intracellular chloride on external NAP-taurine can be explained if NAP-taurine only binds to its site when the transport site is in the outward-facing (Eo or EClo ) form. Since NAP-taurine prevents the conformational change from EClo to ECli , it must lock the system in the outward-facing form. NAP-taurine can therefore be used just like the competitive inhibitor H2DIDS (4,4'-diisothiocyano-1,2- diphenylethane -2,2'-disulfonic acid) to monitor the fraction of transport sites that face outward. A quantitative analysis of the effects of chloride gradients on the inhibitory potency of NAP-taurine and H2DIDS reveals that the transport system is intrinsically asymmetric, such that when Cli = Clo, most of the unloaded transport sites face the cytoplasmic side of the membrane.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barzilay M., Cabantchik Z. I. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr Biochem. 1979;2(2):255–281. doi: 10.3109/09687687909063867. [DOI] [PubMed] [Google Scholar]
  2. Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabantchik Z. I., Knauf P. A., Ostwald T., Markus H., Davidson L., Breuer W., Rothstein A. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell. Biochim Biophys Acta. 1976 Dec 2;455(2):526–537. doi: 10.1016/0005-2736(76)90322-9. [DOI] [PubMed] [Google Scholar]
  4. Cass A., Dalmark M. Equilibrium dialysis of ions in nystatin-treated red cells. Nat New Biol. 1973 Jul 11;244(132):47–49. doi: 10.1038/newbio244047a0. [DOI] [PubMed] [Google Scholar]
  5. Dalmark M. Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol. 1976 Feb;67(2):223–234. doi: 10.1085/jgp.67.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fröhlich O., Leibson C., Gunn R. B. Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site. J Gen Physiol. 1983 Jan;81(1):127–152. doi: 10.1085/jgp.81.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fröhlich O. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J Membr Biol. 1982;65(1-2):111–123. doi: 10.1007/BF01870474. [DOI] [PubMed] [Google Scholar]
  8. Furuya W., Tarshis T., Law F. Y., Knauf P. A. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J Gen Physiol. 1984 May;83(5):657–681. doi: 10.1085/jgp.83.5.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gunn R. B., Fröhlich O. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol. 1979 Sep;74(3):351–374. doi: 10.1085/jgp.74.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jennings M. L. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J Gen Physiol. 1982 Feb;79(2):169–185. doi: 10.1085/jgp.79.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knauf P. A., Breuer W., McCulloch L., Rothstein A. N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system. J Gen Physiol. 1978 Nov;72(5):631–649. doi: 10.1085/jgp.72.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knauf P. A., Mann N. A. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J Gen Physiol. 1984 May;83(5):703–725. doi: 10.1085/jgp.83.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knauf P. A., Rothstein A. Use of NAP-taurine as a photoaffinity probe for the human erythrocyte anion exchange system. Ann N Y Acad Sci. 1980;346:212–231. doi: 10.1111/j.1749-6632.1980.tb22101.x. [DOI] [PubMed] [Google Scholar]
  14. Knauf P. A., Ship S., Breuer W., McCulloch L., Rothstein A. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. J Gen Physiol. 1978 Nov;72(5):607–630. doi: 10.1085/jgp.72.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Macara I. G., Cantley L. C. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites. Biochemistry. 1981 Sep 29;20(20):5695–5701. doi: 10.1021/bi00523a009. [DOI] [PubMed] [Google Scholar]
  16. Milanick M. A., Gunn R. B. Proton-sulfate co-transport: mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J Gen Physiol. 1982 Jan;79(1):87–113. doi: 10.1085/jgp.79.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Passow H., Fasold H., Gärtner E. M., Legrum B., Ruffing W., Zaki L. Anion transport across the red blood cell membrane and the conformation of the protein in Band 3. Ann N Y Acad Sci. 1980;341:361–383. doi: 10.1111/j.1749-6632.1980.tb47184.x. [DOI] [PubMed] [Google Scholar]
  18. Schnell K. F., Besl E., Manz A. Asymmetry of the chloride transport system in human erythrocyte ghosts. Pflugers Arch. 1978 Jun 21;375(1):87–95. doi: 10.1007/BF00584152. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES