Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 Jun 1;83(6):901–918. doi: 10.1085/jgp.83.6.901

Current-dependent block of endplate channels by guanidine derivatives

PMCID: PMC2215667  PMID: 6330282

Abstract

Methyl- and ethylguanidine block the endplate current in frog muscle. Both derivatives blocked inward-going endplate currents without affecting outward endplate currents. Repetitive stimulation that evoked several inward endplate currents enhanced the block, which suggests that these agents interact with open endplate channels. The relative conductance vs. potential curve exhibited a transition from a low to a high value near the reversal potential for the endplate current, both in normal and in 50% Na solution. In the latter solution, the reversal potential for endplate current was shifted by a mean value of 16 mV in the direction of hyperpolarization. The results suggest that methyl- and ethylguanidine block open endplate channels in a manner dependent on the direction of current flow rather than on the membrane potential.

Full Text

The Full Text of this article is available as a PDF (912.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X., Eldefrawi A. T., Eldefrawi M. E., Mansour N. A., Tsai M. C. Amantadine: neuromuscular blockade by suppression of ionic conductance of the acetylcholine receptor. Science. 1978 Feb 17;199(4330):788–790. doi: 10.1126/science.622570. [DOI] [PubMed] [Google Scholar]
  2. Albuquerque E. X., Kuba K., Daly J. Effect of histrionicotoxin on the ionic conductance modulator of the cholinergic receptor: a quantitative analysis of the end-plate current. J Pharmacol Exp Ther. 1974 May;189(2):513–524. [PubMed] [Google Scholar]
  3. Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armstrong C. M. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol. 1969 Nov;54(5):553–575. doi: 10.1085/jgp.54.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Armstrong C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol. 1971 Oct;58(4):413–437. doi: 10.1085/jgp.58.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cahalan M. D. Local anesthetic block of sodium channels in normal and pronase-treated squid giant axons. Biophys J. 1978 Aug;23(2):285–311. doi: 10.1016/S0006-3495(78)85449-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
  8. Deguchi T., Narahashi T. Effects of procaine on ionic conductances of end-plate membranes. J Pharmacol Exp Ther. 1971 Feb;176(2):423–433. [PubMed] [Google Scholar]
  9. Farley J. M., Glavinović M. I., Watanabe S., Narahashi T. Stimulation of transmitter release by guanidine derivatives. Neuroscience. 1979;4(10):1511–1519. doi: 10.1016/0306-4522(79)90056-3. [DOI] [PubMed] [Google Scholar]
  10. Farley J. M., Yeh J. Z., Watanabe S., Narahashi T. Endplate channel block by guanidine derivatives. J Gen Physiol. 1981 Mar;77(3):273–293. doi: 10.1085/jgp.77.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fiekers J. F., Henderson E. G. Voltage clamp analysis of the effect of cationic substitution on the conductance of end-plate channels. Pflugers Arch. 1982 Jul;394(1):38–47. doi: 10.1007/BF01108306. [DOI] [PubMed] [Google Scholar]
  12. Gage P. W. Generation of end-plate potentials. Physiol Rev. 1976 Jan;56(1):177–247. doi: 10.1152/physrev.1976.56.1.177. [DOI] [PubMed] [Google Scholar]
  13. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kordas M. On the role of junctional cholinesterase in determining the time course of the end-plate current. J Physiol. 1977 Aug;270(1):133–150. doi: 10.1113/jphysiol.1977.sp011942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lewis C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol. 1979 Jan;286:417–445. doi: 10.1113/jphysiol.1979.sp012629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Masukawa L. M., Albuquerque E. X. Voltage- and time-dependent action of histrionicotoxin on the endplate current of the frog muscle. J Gen Physiol. 1978 Sep;72(3):351–367. doi: 10.1085/jgp.72.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ruff R. L. A quantitative analysis of local anaesthetic alteration of miniature end-plate currents and end-plate current fluctuations. J Physiol. 1977 Jan;264(1):89–124. doi: 10.1113/jphysiol.1977.sp011659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seyama I., Wu C. H., Narahashi T. Current-dependent block of nerve membrane sodium channels by paragracine. Biophys J. 1980 Mar;29(3):531–537. doi: 10.1016/S0006-3495(80)85151-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. TAKEUCHI A., TAKEUCHI N. Active phase of frog's end-plate potential. J Neurophysiol. 1959 Jul;22(4):395–411. doi: 10.1152/jn.1959.22.4.395. [DOI] [PubMed] [Google Scholar]
  20. Tsai M. C., Mansour N. A., Eldefrawi A. T., Eldefrawi M. E., Albuquerque E. X. Mechanism of action of amantadine on neuromuscular transmission. Mol Pharmacol. 1978 Sep;14(5):787–803. [PubMed] [Google Scholar]
  21. Watanabe S., Narahashi T. Cation selectivity of acetylcholine-activated ionic channel of frog endplate. J Gen Physiol. 1979 Nov;74(5):615–628. doi: 10.1085/jgp.74.5.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yamamoto D., Yeh J. Z., Narahashi T. Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channels. Biophys J. 1984 Jan;45(1):337–344. doi: 10.1016/S0006-3495(84)84159-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yeh J. Z. Dynamics of 9-aminoacridine block of sodium channels in squid axons. J Gen Physiol. 1979 Jan;73(1):1–21. doi: 10.1085/jgp.73.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yeh J. Z. Sodium inactivation mechanism modulates QX-314 block of sodium channels in squid axons. Biophys J. 1978 Nov;24(2):569–574. doi: 10.1016/S0006-3495(78)85403-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES