Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 Feb 1;71(2):123–138. doi: 10.1085/jgp.71.2.123

The eel retina. Receptor classes and spectral mechanisms

PMCID: PMC2215701  PMID: 641517

Abstract

Light and electron microscopy revealed that there are both rods and cones in the retina of the eel Anguilla rostrata. The rods predominate with a rod to cone ratio of 150:1. The spectral sensitivity of the dark- adapted eyecup ERG had a peak at about 520 nm and was well fit by a vitamin A2 nomogram pigment with a lambdamax = 520 nm. This agrees with the eel photopigment measurements of other investigators. This result implies that a single spectral mechanism--the rods--provides the input for the dark-adapted ERG. The spectral sensitivity of the ERG to flicker in the light-adapted eyecup preparation was shifted to longer wavelengths; it peaked at around 550 nm. However, there was evidence that this technique might not have completely eliminated rod intrusion. Rod responses were abolished in a bleached isolated retina preparation, in which it was shown that there were two classes of cone-like mechanisms, one with lambdamax of 550 nm and the other with lambdamax of less than 450 nm. Ganglion cell recording provided preliminary evidence for opponent-color processing. Horizontal cells were only of the L type with both rod and cone inputs.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian E. D., Matthews R. The action of light on the eye: Part I. The discharge of impulses in the optic nerve and its relation to the electric changes in the retina. J Physiol. 1927 Sep 9;63(4):378–414. doi: 10.1113/jphysiol.1927.sp002410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian E. D., Matthews R. The action of light on the eye: Part II. The processes involved in retinal excitation. J Physiol. 1927 Dec 29;64(3):279–301. doi: 10.1113/jphysiol.1927.sp002437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adrian E. D., Matthews R. The action of light on the eye: Part III. The interaction of retinal neurones. J Physiol. 1928 Jun 24;65(3):273–298. doi: 10.1113/jphysiol.1928.sp002475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bridges C. D. Spectroscopic properties of porphyropsins. Vision Res. 1967 May;7(5):349–369. doi: 10.1016/0042-6989(67)90044-2. [DOI] [PubMed] [Google Scholar]
  5. Brown K. T., Murakami M. Rapid effects of light and dark adaptation upon the receptive field organization of S-potentials and late receptor potentials. Vision Res. 1968 Sep;8(9):1145–1171. doi: 10.1016/0042-6989(68)90024-2. [DOI] [PubMed] [Google Scholar]
  6. Burkhardt D. A. The goldfish electroretinogram: relation between photopic spectral sensitivity functions and cone absorption spectra. Vision Res. 1966 Oct;6(9):517–532. [PubMed] [Google Scholar]
  7. DODT E. Cone electroretinography by flicker. Nature. 1951 Oct 27;168(4278):738–738. doi: 10.1038/168738a0. [DOI] [PubMed] [Google Scholar]
  8. De Valois R. L., Abramov I., Jacobs G. H. Analysis of response patterns of LGN cells. J Opt Soc Am. 1966 Jul;56(7):966–977. doi: 10.1364/josa.56.000966. [DOI] [PubMed] [Google Scholar]
  9. Fain G. L. Interactions of rod and cone signals in the mudpuppy retina. J Physiol. 1975 Nov;252(3):735–769. doi: 10.1113/jphysiol.1975.sp011168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldstein E. B. Cone pigment regeneration in the isolated frog retina. Vision Res. 1970 Oct;10(10):1065–1068. doi: 10.1016/0042-6989(70)90082-9. [DOI] [PubMed] [Google Scholar]
  11. Goldstein E. B. Early receptor potential of the isolated frog (Rana pipiens) retina. Vision Res. 1967 Nov;7(11):837–845. doi: 10.1016/0042-6989(67)90004-1. [DOI] [PubMed] [Google Scholar]
  12. Hood D. C., Hock P. A. Recovery of cone receptor activity in the frog's isolated retina. Vision Res. 1973 Oct;13(10):1943–1951. doi: 10.1016/0042-6989(73)90065-5. [DOI] [PubMed] [Google Scholar]
  13. JOHNSON E. P., CORNSWEET T. N. Electroretinal photopic sensitivity curves. Nature. 1954 Sep 25;174(4430):614–615. doi: 10.1038/174614b0. [DOI] [PubMed] [Google Scholar]
  14. Kaneko A., Yamada M. S-potentials in the dark-adapted retina of the carp. J Physiol. 1972 Dec;227(1):261–273. doi: 10.1113/jphysiol.1972.sp010031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laufer M., Millán E. Spectral analysis of L-type S-potentials and their relation to photopigment absorption in a fish (Eugerres plumieri) retina. Vision Res. 1970 Mar;10(3):237–251. doi: 10.1016/0042-6989(70)90129-x. [DOI] [PubMed] [Google Scholar]
  16. MARKS W. B. VISUAL PIGMENTS OF SINGLE GOLDFISH CONES. J Physiol. 1965 May;178:14–32. doi: 10.1113/jphysiol.1965.sp007611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Munz F. W., Schwanzara S. A. A nomogram for retinene-2-based visual pigments. Vision Res. 1967 Mar;7(3):111–120. doi: 10.1016/0042-6989(67)90078-8. [DOI] [PubMed] [Google Scholar]
  18. Naka K. I., Rushton W. A. S-potential and dark adaptation in fish. J Physiol. 1968 Jan;194(1):259–269. doi: 10.1113/jphysiol.1968.sp008406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orlov O. Y., Maksimova E. M. S-potential sources as excitation pools. Vision Res. 1965 Dec;5(11):573–582. doi: 10.1016/0042-6989(65)90032-5. [DOI] [PubMed] [Google Scholar]
  20. RIGGS L. A., BERRY R. N., WAYNER M. A comparison of electrical and psychophysical determinations of the spectral sensitivity of the human eye. J Opt Soc Am. 1949 Jun;39(6):427–436. doi: 10.1364/josa.39.000427. [DOI] [PubMed] [Google Scholar]
  21. Shapley R. M., Gordon J. The eel retina. Ganglion cell classes and spatial mechanisms. J Gen Physiol. 1978 Feb;71(2):139–155. doi: 10.1085/jgp.71.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES