Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 Mar 1;71(3):285–299. doi: 10.1085/jgp.71.3.285

Desensitization onset and recovery at the potassium-depolarized frog neuromuscular junction are voltage sensitive

PMCID: PMC2215726  PMID: 650169

Abstract

The influence of voltage on the time-course of desensitization onset and recovery has been studied at the frog neuromuscular junction. The activation-desensitization sequence was determined from carbachol- induced end-plate currents in potassium-depolarized fibers voltage- clamped either to -40 mV or +40 mV. The time-course of both desensitization onset and recovery developed exponentially, with onset occurring more rapidly than recovery. Desensitization onset was voltage dependent, the onset time constant being 8.3 +/- 1.3 s (11 fibers) at - 40 mV and 19.3 +/- 3.4 s (15 fibers) at +40 mV. Recovery from desensitization was also influenced by voltage. The extent of recovery after 2 min was 80.4 +/- 6.3% in those fibers voltage-clamped to -40 mV and 57.4 +/- 3.6% in those fibers voltage-clamped to +40 mV. The voltage dependence of desenistization onset and recovery did not result from a difference in ability to control voltage at these two levels of membrane potential. These results demonstrate that in the potassium- depolarized preparation the processes controlling both desensitization onset and recovery of sensitivity from the desensitivity from the desensitized state are influenced by membrane voltage.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R. A study of desensitization using voltage clamp. Pflugers Arch. 1975 Oct 28;360(2):135–144. doi: 10.1007/BF00580536. [DOI] [PubMed] [Google Scholar]
  2. Dionne V. E. Characterization of drug iontophoresis with a fast microassay technique. Biophys J. 1976 Jul;16(7):705–717. doi: 10.1016/S0006-3495(76)85723-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dionne V. E., Stevens C. F. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox. J Physiol. 1975 Oct;251(2):245–270. doi: 10.1113/jphysiol.1975.sp011090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibbons W. R., Fozzard H. A. Voltage dependence and time dependence of contraction in sheep cardiac Purkinje fibers. Circ Res. 1971 Apr;28(4):446–460. doi: 10.1161/01.res.28.4.446. [DOI] [PubMed] [Google Scholar]
  5. KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KOELLE G. B., FRIEDENWALD J. A. A histochemical method for localizing cholinesterase activity. Proc Soc Exp Biol Med. 1949 Apr;70(4):617–622. doi: 10.3181/00379727-70-17013. [DOI] [PubMed] [Google Scholar]
  7. Kordas M. On the role of junctional cholinesterase in determining the time course of the end-plate current. J Physiol. 1977 Aug;270(1):133–150. doi: 10.1113/jphysiol.1977.sp011942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lambert D. H., Spannbauer P. M., Parsons R. L. Desensitisation does not selectively alter sodium channels. Nature. 1977 Aug 11;268(5620):553–555. doi: 10.1038/268553a0. [DOI] [PubMed] [Google Scholar]
  9. Magazanik L. G., Vyskocit F. The effect of temperature on desensitization kinetics at the post-synaptic membrane of the frog muscle fibre. J Physiol. 1975 Jul;249(2):285–300. doi: 10.1113/jphysiol.1975.sp011016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Manthey A. A. Further studies of the effect of calcium on the time course of action of carbamylcholine at the neuromuscular junction. J Gen Physiol. 1970 Sep;56(3):407–419. doi: 10.1085/jgp.56.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Manthey A. A. The antagonistic effects of calcium and potassium on the time course of action of carbamylcholine at the neuromuscular junction. J Membr Biol. 1972;9(4):319–340. [PubMed] [Google Scholar]
  12. Manthey A. A. The effect of calcium on the desensitization of membrane receptors at the neuromuscular junction. J Gen Physiol. 1966 May;49(5):963–976. doi: 10.1085/jgp.49.5.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nastuk W. L., Parsons R. L. Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle. J Gen Physiol. 1970 Aug;56(2):218–249. doi: 10.1085/jgp.56.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parsons R. L., Schnitzler R. M., Cochrane D. E. Inhibition of end-plate desensitization by sodium. Am J Physiol. 1974 Jul;227(1):96–100. doi: 10.1152/ajplegacy.1974.227.1.96. [DOI] [PubMed] [Google Scholar]
  15. Rang H. P., Ritter J. M. On the mechanism of desensitization at cholinergic receptors. Mol Pharmacol. 1970 Jul;6(4):357–382. [PubMed] [Google Scholar]
  16. Scubon-Mulieri B., Parsons R. L. Desensitization and recovery at the frog neuromuscular junction. J Gen Physiol. 1977 Apr;69(4):431–447. doi: 10.1085/jgp.69.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TAKEUCHI A., TAKEUCHI N. Active phase of frog's end-plate potential. J Neurophysiol. 1959 Jul;22(4):395–411. doi: 10.1152/jn.1959.22.4.395. [DOI] [PubMed] [Google Scholar]
  18. THESLEFT S. The mode of neuromuscular block caused by acetylcholine, nicotine, decamethonium and succinylcholine. Acta Physiol Scand. 1955 Oct 27;34(2-3):218–231. doi: 10.1111/j.1748-1716.1955.tb01242.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES