Abstract
The ionizable groups and conductances of the rod plasma membrane were studied by measuring membrane potential and input impedance with micropipettes that were placed in the rod outer segments. Reduction of the pH from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark (by 2- 3 mV) and an increased size of the light response (also by 2-3 mV). The dark depolarization was accompanied by and increased resting input impedance (by 11-35 Mω). When the pH was decreased in a perfusate in which Cl(-) was replaced by isethionate, the membrane depolarized. When the pH was decreased in a perfusate in which Na(+) was replaced by choline, an increase of input impedance was observed (11-50 Mω) even though a depolarization did not occur. These results are consistent with the interpretation that the effects of decreased extracellular pH result mainly from a decrease in rod membrane K(+) conductance that is presumably cause by protonation of ionizable groups having a pK(a) between 7.3 and 7.8. Furthermore, from these results and results obtained by using CO(2) and NH(3) to affect specifically the internal pH of the cell, it seems unlikely that altered cytoplasmic [H(+)] is a cytoplasmic messenger for excitation of the rod. When the rods were exposed to perfusate in which Na(+) was replaced by choline, the resting (dark) input impedance increased (by 26 Mω +/- 5 Mω SE), and the light-induced changes in input impedance became undetectable. Replacement of Cl(-) by isethionate had no detectable effect on either the resting input impedance or the light-induced changes in input impedance. These results confirm previous findings that the primary effect of light is to decrease the membrane conductance to Na(+) and show that, if any other changes in conductance occur, they depend upon the change in Na(+) conductance. The results are consistent with the following relative resting conductances of the rod membrane: G(Na(+)) similar to G(K(+)) more than 2-5 G(Cl(-)).
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baylor D. A., Hodgkin A. L., Lamb T. D. The electrical response of turtle cones to flashes and steps of light. J Physiol. 1974 Nov;242(3):685–727. doi: 10.1113/jphysiol.1974.sp010731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Coles J. A., Pinto L. H. Effects of injections of calcium and EGTA into the outer segments of retinal rods of Bufo marinus. J Physiol. 1977 Aug;269(3):707–722. doi: 10.1113/jphysiol.1977.sp011924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Pinto L. H. Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J Physiol. 1974 Feb;236(3):575–591. doi: 10.1113/jphysiol.1974.sp010453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coles J. A., Brown J. E. Effects of increased intracellular pH-buffering capacity on the light response of Limulus ventral photoreceptor. Biochim Biophys Acta. 1976 Jun 4;436(1):140–153. doi: 10.1016/0005-2736(76)90226-1. [DOI] [PubMed] [Google Scholar]
- Copenhagen D. R., Owen W. G. Functional characteristics of lateral interactions between rods in the retina of the snapping turtle. J Physiol. 1976 Jul;259(2):251–282. doi: 10.1113/jphysiol.1976.sp011465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emrich H. M. Optical measurements of the rapid pH-change in the visual process during the metarhodopsin I-II reaction. Z Naturforsch B. 1971 Apr;26(4):352–356. doi: 10.1515/znb-1971-0417. [DOI] [PubMed] [Google Scholar]
- Erhardt F., Ostroy S. E., Abrahamson E. W. Protein configuration changes in the photolysis of rhodopsin. I. The thermal decay of cattle lumirhodopsin in vitro. Biochim Biophys Acta. 1966 Feb 7;112(2):256–264. doi: 10.1016/0926-6585(66)90325-6. [DOI] [PubMed] [Google Scholar]
- Fain G. L., Gold G. H., Dowling J. E. Receptor coupling in the toad retina. Cold Spring Harb Symp Quant Biol. 1976;40:547–561. doi: 10.1101/sqb.1976.040.01.051. [DOI] [PubMed] [Google Scholar]
- Fain G. L. Quantum sensitivity of rods in the toad retina. Science. 1975 Mar 7;187(4179):838–841. doi: 10.1126/science.1114328. [DOI] [PubMed] [Google Scholar]
- Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
- Hagins W. A., Penn R. D., Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970 May;10(5):380–412. doi: 10.1016/S0006-3495(70)86308-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Gruener R., Hayashi H., Sakata H., Grinnell A. D. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle. J Gen Physiol. 1968 Nov;52(5):773–792. doi: 10.1085/jgp.52.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korenbrot J. I., Cone R. A. Dark ionic flux and the effects of light in isolated rod outer segments. J Gen Physiol. 1972 Jul;60(1):20–45. doi: 10.1085/jgp.60.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb T. D., Simon E. J. The relation between intercellular coupling and electrical noise in turtle photoreceptors. J Physiol. 1976 Dec;263(2):257–286. doi: 10.1113/jphysiol.1976.sp011631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasansky A., Marchiafava P. L. Light-induced resistance changes in retinal rods and cones of the tiger salamander. J Physiol. 1974 Jan;236(1):171–191. doi: 10.1113/jphysiol.1974.sp010429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConnell D. G., Rafferty C. N., Dilley R. A. The light-induced proton uptake in bovine retinal outer segment fragments. J Biol Chem. 1968 Nov 25;243(22):5820–5826. [PubMed] [Google Scholar]
- Minor A. V., Maksimov V. V. Passivnye élektricheskie svoistva modeli ploskoi kletki. Biofizika. 1969 Mar-Apr;14(2):328–335. [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Ostroy S. E. Hydrogen ion changes of rhodopsin. pK changes and the thermal decay of metarhodopsin II380. Arch Biochem Biophys. 1974 Sep;164(1):275–284. doi: 10.1016/0003-9861(74)90032-0. [DOI] [PubMed] [Google Scholar]
- Ostroy S. E. Rhodopsin and the visual process. Biochim Biophys Acta. 1977 Jun 21;463(1):91–125. doi: 10.1016/0304-4173(77)90004-0. [DOI] [PubMed] [Google Scholar]
- Penn R. D., Hagins W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969 Jul 12;223(5202):201–204. doi: 10.1038/223201a0. [DOI] [PubMed] [Google Scholar]
- Pinto L. H., Pak W. L. Light-induced changes in photoreceptor membrane resistance and potential in Gecko retinas. I. Preparations treated to reduce lateral interactions. J Gen Physiol. 1974 Jul;64(1):26–48. doi: 10.1085/jgp.64.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RADDING C. M., WALD G. Acid-base properties of rhodopsin and opsin. J Gen Physiol. 1956 Jul 20;39(6):909–922. doi: 10.1085/jgp.39.6.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racker E., Stoeckenius W. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem. 1974 Jan 25;249(2):662–663. [PubMed] [Google Scholar]
- Schwartz E. A. Electrical properties of the rod syncytium in the retina of the turtle. J Physiol. 1976 May;257(2):379–406. doi: 10.1113/jphysiol.1976.sp011374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens W. G. Hydrogen ion and the activation of electrically excitable membranes. Nature. 1969 Nov 8;224(5219):547–549. doi: 10.1038/224547a0. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyoda J., Nosaki H., Tomita T. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 1969 Apr;9(4):453–463. doi: 10.1016/0042-6989(69)90134-5. [DOI] [PubMed] [Google Scholar]
- Ward J. A., Ostroy S. E. Hydrogen ion effects and the vertebrate late receptor potential. Biochim Biophys Acta. 1972 Nov 17;283(2):373–380. doi: 10.1016/0005-2728(72)90253-8. [DOI] [PubMed] [Google Scholar]
- Wong J. K., Ostroy S. E. Hydrogen ion changes of rhodopsin I. Proton uptake during the metarhodopsin I 478 metarhodopsin II 308 reaction. Arch Biochem Biophys. 1973 Jan;154(1):1–7. doi: 10.1016/0003-9861(73)90028-3. [DOI] [PubMed] [Google Scholar]
- Young R. W. The renewal of photoreceptor cell outer segments. J Cell Biol. 1967 Apr;33(1):61–72. doi: 10.1083/jcb.33.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]