Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1980 Feb 1;75(2):183–206. doi: 10.1085/jgp.75.2.183

Properties of sodium pumps in internally perfused barnacle muscle fibers

PMCID: PMC2215745  PMID: 7373278

Abstract

To study the properties of the Na extrusion mechanism, giant muscle fibers from barnacle (Balanus nubilus) were internally perfused with solutions containing tracer 22Na. In fibers perfused with solutions containing adenosine 5'-triphosphate (ATP) and 30 mM Na, the Na efflux into 10 mM K seawater was approximately 25-30 pmol/cm2.s; 70% of this efflux was blocked by 50-100 microM ouabain, and approximately 30% was blocked by removal of external K. The ouabain-sensitive and K-dependent Na effluxes were abolished by depletion of internal ATP and were sigmoid-shaped functions of the internal Na concentration ([Na]i), with half-maxima at [Na]i approximately or equal to 20 mM. These sigmoid functions fit the Hill equation with Hill coefficients of approximately 3.5. Ouabain depolarized ATP-fueled fibers by 1.5-2 mV ([Na]i greater than or equal to 30 mM) but had very little effect on the membrane potential of ATP-depleted fibers; ATP depletion itself caused a 2-2.5- mV depolarization. When fueled fibers were treated with 3,4- diaminopyridine or Ba2+ (to reduce the K conductance and increase membrane resistance), application of ouabain produced a 4-5 mV depolarization. These results indicate that an electrogenic, ATP- dependent Na-K exchange pump is functional in internally perfused fibers; the internal perfusion technique provides a convenient method for performing transport studies that require good intracellular solute control.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie R. F., de Weer P. Electric current generated by squid giant axon sodium pump: external K and internal ADP effects. Am J Physiol. 1978 Jul;235(1):C63–C68. doi: 10.1152/ajpcell.1978.235.1.C63. [DOI] [PubMed] [Google Scholar]
  2. BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the protoplasm of a giant nerve fibre with artificial solutions. Nature. 1961 Jun 3;190:885–887. doi: 10.1038/190885a0. [DOI] [PubMed] [Google Scholar]
  3. Baker P. F., Blaustein M. P., Keynes R. D., Manil J., Shaw T. I., Steinhardt R. A. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol. 1969 Feb;200(2):459–496. doi: 10.1113/jphysiol.1969.sp008703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Foster R. F., Gilbert D. S., Shaw T. I. Sodium transport by perfused giant axons of Loligo. J Physiol. 1971 Dec;219(2):487–506. doi: 10.1113/jphysiol.1971.sp009674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brinley F. J., Jr, Mullins L. J. Sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2303–2331. doi: 10.1085/jgp.50.10.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brinley F. J., Jr Sodium and potassium fluxes in isolated barnacle muscle fibers. J Gen Physiol. 1968 Apr;51(4):445–477. doi: 10.1085/jgp.51.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CALDWELL P. C., HODGKIN A. L., KEYNES R. D., SHAW T. I. Partial inhibition of the active transport of cations in the giant axons of Loligo. J Physiol. 1960 Jul;152:591–600. doi: 10.1113/jphysiol.1960.sp006510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CARMELIET E. E. INFLUENCE OF LITHIUM IONS ON THE TRANSMEMBRANE POTENTIAL AND CATION CONTENT OF CARDIAC CELLS. J Gen Physiol. 1964 Jan;47:501–530. doi: 10.1085/jgp.47.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Weer P. Cyanide-induces hyperpolarization in squid giant axons. Ann N Y Acad Sci. 1978 Apr 28;307:427–430. doi: 10.1111/j.1749-6632.1978.tb41967.x. [DOI] [PubMed] [Google Scholar]
  11. De Weer P. Na+, K+ exchange and Na+, Na+ exchange in the giant axon of the squid. Ann N Y Acad Sci. 1974;242(0):434–444. doi: 10.1111/j.1749-6632.1974.tb19107.x. [DOI] [PubMed] [Google Scholar]
  12. DiPolo R., Caputo C. The effect of ATP on calcium efflux in dialyzed barnacle muscle fibres. Biochim Biophys Acta. 1977 Nov 1;470(3):389–394. doi: 10.1016/0005-2736(77)90130-4. [DOI] [PubMed] [Google Scholar]
  13. DiPolo R. Chloride fluxes in isolated dialyzed barnacle muscle fibers. J Gen Physiol. 1972 Oct;60(4):471–497. doi: 10.1085/jgp.60.4.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glynn I. M., Karlish S. J. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium. J Physiol. 1976 Apr;256(2):465–496. doi: 10.1113/jphysiol.1976.sp011333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  17. Godfraind J. M., Kawamura H., Krnjević K., Pumain R. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J Physiol. 1971 May;215(1):199–222. doi: 10.1113/jphysiol.1971.sp009465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. HOFFMAN J. F. Physiological characteristics of human red blood cell ghosts. J Gen Physiol. 1958 Sep 20;42(1):9–28. doi: 10.1085/jgp.42.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hagiwara S., Fukuda J., Eaton D. C. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol. 1974 May;63(5):564–578. doi: 10.1085/jgp.63.5.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hagiwara S., Gruener R., Hayashi H., Sakata H., Grinnell A. D. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle. J Gen Physiol. 1968 Nov;52(5):773–792. doi: 10.1085/jgp.52.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hoyle G., McNeill P. A., Selverston A. I. Ultrastructure of barnacle giant muscle fibers. J Cell Biol. 1973 Jan;56(1):74–91. doi: 10.1083/jcb.56.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karl D. M., Holm-Hansen O. Effects of luciferin concentration on the quantitative assay of ATP using crude luciferase preparations. Anal Biochem. 1976 Sep;75(1):100–112. doi: 10.1016/0003-2697(76)90060-9. [DOI] [PubMed] [Google Scholar]
  26. Kennedy B. G., De Weer P. Strophanthidin-sensitive sodium fluxes in metabolically poisoned frog skeletal muscle. J Gen Physiol. 1976 Oct;68(4):405–420. doi: 10.1085/jgp.68.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Keynes R. D., Rojas E., Taylor R. E., Vergara J. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J Physiol. 1973 Mar;229(2):409–455. doi: 10.1113/jphysiol.1973.sp010146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kirsch G. E., Narahashi T. 3,4-diaminopyridine. A potent new potassium channel blocker. Biophys J. 1978 Jun;22(3):507–512. doi: 10.1016/S0006-3495(78)85503-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kyte J. Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla. J Biol Chem. 1971 Jul 10;246(13):4157–4165. [PubMed] [Google Scholar]
  30. MULLINS L. J., FRUMENTO A. S. The concentration dependence of sodium efflux from muscle. J Gen Physiol. 1963 Mar;46:629–654. doi: 10.1085/jgp.46.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murayama K., Lakshminarayanaiah N. Some electrical properties of the membrane of the barnacle muscle fibers under internal perfusion. J Membr Biol. 1977 Jul 14;35(3):257–283. doi: 10.1007/BF01869953. [DOI] [PubMed] [Google Scholar]
  32. OIKAWA T., SPYROPOULOS C. S., TASAKI I., TEORELL T. Methods for perfusing the giant axon of Loligo pealii. Acta Physiol Scand. 1961 Jun;52:195–196. doi: 10.1111/j.1748-1716.1961.tb02218.x. [DOI] [PubMed] [Google Scholar]
  33. Russell J. M., Blaustein M. P. Calcium efflux from barnacle muscle fibers. Dependence on external cations. J Gen Physiol. 1974 Feb;63(2):144–167. doi: 10.1085/jgp.63.2.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Russell J. M., Blaustein M. P. Calcium fluxes in internally dialyzed giant barnacle muscle fibers. J Membr Biol. 1975 Aug 29;23(2):157–179. doi: 10.1007/BF01870249. [DOI] [PubMed] [Google Scholar]
  35. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES