Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Mar 1;79(3):507–528. doi: 10.1085/jgp.79.3.507

Effects of solvent and solute drag on transmembrane diffusion

PMCID: PMC2215754  PMID: 6804595

Abstract

The present study compares and quantitates both solvent drag and solute drag forces in a system with both heteropore and homopore membranes. It is shown that tracer solute permeability can be increased if solution flow or driver solute flux is in the direction of tracer diffusion. Either force can decrease tracer permeability if the force can decrease tracer permeability if the force is opposite to the direction of tracer diffusion. The two forces can be additive or one force may reduce the effect of the other force. In the particular system quantitated, solute drag is shown to be some 300 times more effective than solvent drag on a mole-to-mole basis. The use of a number of solute pairs on other homopore and heteropore membranes confirms the finding that the two drag forces can be analyzed or manipulated in a variety of systems.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN B., USSING H. H. Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol Scand. 1957 Jun 8;39(2-3):228–239. doi: 10.1111/j.1748-1716.1957.tb01425.x. [DOI] [PubMed] [Google Scholar]
  2. Beck R. E., Schultz J. S. Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry. Biochim Biophys Acta. 1972 Jan 17;255(1):273–303. doi: 10.1016/0005-2736(72)90028-4. [DOI] [PubMed] [Google Scholar]
  3. DURBIN R. P. Osmotic flow of water across permeable cellulose membranes. J Gen Physiol. 1960 Nov;44:315–326. doi: 10.1085/jgp.44.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Franz T. J., Galey W. R., Van Bruggen J. T. Further observations on asymmetrical solute movement across membranes. J Gen Physiol. 1968 Jan;51(1):1–12. doi: 10.1085/jgp.51.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GOLDSTEIN D. A., SOLOMON A. K. Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J Gen Physiol. 1960 Sep;44:1–17. doi: 10.1085/jgp.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galey W. R., Van Bruggen J. T. The coupling of solute fluxes in membranes. J Gen Physiol. 1970 Feb;55(2):220–242. doi: 10.1085/jgp.55.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
  8. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  9. Van Bruggen J. T., Boyett J. D., van Bueren A. L., Galey W. R. Solute flux coupling in a homopore membrane. J Gen Physiol. 1974 Jun;63(6):639–656. doi: 10.1085/jgp.63.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES