Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Mar 1;79(3):453–479. doi: 10.1085/jgp.79.3.453

Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump

PMCID: PMC2215755  PMID: 6281359

Abstract

Sodium and potassium ion contents and fluxes of isolated resting human peripheral polymorphonuclear leukocytes were measured. In cells kept at 37 degrees C, [Na]i was 25 mM and [K]i was 120 mM; both ions were completely exchangeable with extracellular isotopes. One-way Na and K fluxes, measured with 22Na and 42K, were all approximately 0.9 meq/liter cell water . min. Ouabain had no effect on Na influx or K efflux, but inhibited 95 +/- 7% of Na efflux and 63% of K influx. Cells kept at 0 degree C gained sodium in exchange for potassium ([Na]i nearly tripled in 3 h); upon rewarming, ouabain-sensitive K influx into such cells was strongly enhanced. External K stimulated Na efflux (Km approximately 1.5 mM in 140-mM Na medium). The PNa/PK permeability ratio, estimated from ouabain insensitive fluxes, was 0.10. Valinomycin (1 microM) approximately doubled PK. Membrane potential (Vm) was estimated using the potentiometric indicator diS-C3(5); calibration was based on the assumption of constant-field behavior. External K, but not Cl, affected Vm. Ouabain caused a depolarization whose magnitude dependent on [Na]i. Sodium-depleted cells became hyperpolarized when exposed to the neutral exchange carrier monensin; this hyperpolarization was abolished by ouabain. We conclude that the sodium pump of human peripheral neutrophils is electrogenic, and that the size of the pump-induced hyperpolarization is consistent with the membrane conductance (3.7-4.0 microseconds/cm2) computed from the individual K and Na conductances.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron D. N., Ahmed S. A. Intracellular concentrations of water and of the principal electrolytes determined by analysis of isolated human leucocytes. Clin Sci. 1969 Aug;37(1):205–219. [PubMed] [Google Scholar]
  2. Castranova V., Bowman L., Miles P. R. Transmembrane potential and ionic content of rat alveolar macrophages. J Cell Physiol. 1979 Dec;101(3):471–479. doi: 10.1002/jcp.1041010313. [DOI] [PubMed] [Google Scholar]
  3. Cividalli G., Nathan D. G. Sodium and potassium concentration and transmembrane fluxes in leukocytes. Blood. 1974 Jun;43(6):861–869. [PubMed] [Google Scholar]
  4. Dos Reis G. A., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes. I. Potassium-dependent slow membrane hyperpolarizations in mice macrophages. Biochim Biophys Acta. 1977 Sep 19;469(3):257–263. doi: 10.1016/0005-2736(77)90161-4. [DOI] [PubMed] [Google Scholar]
  5. Dunham P. B., Goldstein I. M., Weissmann G. Potassium and amino acid transport in human leukocytes exposed to phagocytic stimuli. J Cell Biol. 1974 Oct;63(1):215–226. doi: 10.1083/jcb.63.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freedman J. C., Hoffman J. F. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria. J Gen Physiol. 1979 Aug;74(2):187–212. doi: 10.1085/jgp.74.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallin E. K., Gallin J. I. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J Cell Biol. 1977 Oct;75(1):277–289. doi: 10.1083/jcb.75.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gallin E. K., Wiederhold M. L., Lipsky P. E., Rosenthal A. S. Spontaneous and induced membrane hyperpolarizations in macrophages. J Cell Physiol. 1975 Dec;86 (Suppl 2)(3 Pt 2):653–661. doi: 10.1002/jcp.1040860510. [DOI] [PubMed] [Google Scholar]
  9. HEMPLING H. G. Potassium and sodium movements in rabbit polymorphonuclear leukocytes. J Cell Physiol. 1954 Aug;44(1):87–104. doi: 10.1002/jcp.1030440108. [DOI] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hladky S. B., Rink T. J. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential. J Physiol. 1976 Dec;263(2):287–319. doi: 10.1113/jphysiol.1976.sp011632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffman J. F., Kaplan J. H., Callahan T. J. The Na:K pump in red cells is electrogenic. Fed Proc. 1979 Oct;38(11):2440–2441. [PubMed] [Google Scholar]
  15. Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J Physiol. 1974 Jun;239(3):519–552. doi: 10.1113/jphysiol.1974.sp010581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones G. S., Van Dyke K., Castranova V. Purification of human granulocytes by centrifugal elutriation and measurement of transmembrane potential. J Cell Physiol. 1980 Sep;104(3):425–431. doi: 10.1002/jcp.1041040315. [DOI] [PubMed] [Google Scholar]
  17. Korchak H. M., Weissmann G. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3818–3822. doi: 10.1073/pnas.75.8.3818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Korchak H. M., Weissmann G. Stimulus-response coupling in the human neutrophil. Transmembrane potential and the role of extracellular Na+. Biochim Biophys Acta. 1980 Sep 2;601(1):180–194. doi: 10.1016/0005-2736(80)90523-4. [DOI] [PubMed] [Google Scholar]
  19. Kouri J., Noa M., Diaz B., Niubo E. Hyperpolarisation of rat peritoneal macrophages phagocytosing latex particles. Nature. 1980 Feb 28;283(5750):868–869. doi: 10.1038/283868a0. [DOI] [PubMed] [Google Scholar]
  20. Krasne S. Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes. Biophys J. 1980 Jun;30(3):415–439. doi: 10.1016/S0006-3495(80)85105-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lichtman M. A., Weed R. I. The monovalent cation content and adenosine triphosphatase activity of human normal and leukemic granulocytes and lymphocytes: relationship to cell volume and morphologic age. Blood. 1969 Nov;34(5):645–660. [PubMed] [Google Scholar]
  22. MULLINS L. J., NODA K. THE INFLUENCE OF SODIUM-FREE SOLUTIONS ON THE MEMBRANE POTENTIAL OF FROG MUSCLE FIBERS. J Gen Physiol. 1963 Sep;47:117–132. doi: 10.1085/jgp.47.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naccache P. H., Showell H. J., Becker E. L., Sha'afi R. I. Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor. J Cell Biol. 1977 May;73(2):428–444. doi: 10.1083/jcb.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pressman B. Mechanism of action of transport-mediating antibiotics. Ann N Y Acad Sci. 1969 Oct 31;147(19):829–841. doi: 10.1111/j.1749-6632.1969.tb41291.x. [DOI] [PubMed] [Google Scholar]
  25. Rink T. J., Montecucco C., Hesketh T. R., Tsien R. Y. Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta. 1980;595(1):15–30. doi: 10.1016/0005-2736(80)90243-6. [DOI] [PubMed] [Google Scholar]
  26. Seligmann B. E., Gallin E. K., Martin D. L., Shain W., Gallin J. I. Interaction of chemotactic factors with human polymorphonuclear leukocytes: studies using a membrane potential-sensitive cyanine dye. J Membr Biol. 1980;52(3):257–272. doi: 10.1007/BF01869194. [DOI] [PubMed] [Google Scholar]
  27. Seligmann B. E., Gallin J. I. Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease. J Clin Invest. 1980 Sep;66(3):493–503. doi: 10.1172/JCI109880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simchowitz L., Spilberg I. Generation of superoxide radicals by human peripheral neutrophils activated by chemotactic factor. Evidence for the role of calcium. J Lab Clin Med. 1979 Apr;93(4):583–593. [PubMed] [Google Scholar]
  29. Simons T. J. Carbocyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts. Nature. 1976 Dec 2;264(5585):467–469. doi: 10.1038/264467a0. [DOI] [PubMed] [Google Scholar]
  30. Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
  31. Tatham P. E., Delves P. J., Shen L., Roitt I. M. Chemotactic factor-induced membrane potential changes in rabbit neutrophils monitored by the fluorescent dye 3,3'-dipropylthiadicarbocyanine iodide. Biochim Biophys Acta. 1980 Nov 4;602(2):285–298. doi: 10.1016/0005-2736(80)90312-0. [DOI] [PubMed] [Google Scholar]
  32. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  33. Tsien R. Y., Hladky S. B. A quantitative resolution of the spectra of a membrane potential indicator, diS-C3-(5), bound to cell components and to red blood cells. J Membr Biol. 1978 Jan 12;38(1-2):73–97. doi: 10.1007/BF01875163. [DOI] [PubMed] [Google Scholar]
  34. Waggoner A. S., Wang C. H., Tolles R. L. Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes. J Membr Biol. 1977 May 6;33(1-2):109–140. doi: 10.1007/BF01869513. [DOI] [PubMed] [Google Scholar]
  35. Waggoner A. Optical probes of membrane potential. J Membr Biol. 1976 Jun 30;27(4):317–334. doi: 10.1007/BF01869143. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES