Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Mar 1;79(3):437–452. doi: 10.1085/jgp.79.3.437

Rate-limiting steps in the tension development of freeze-glycerinated vascular smooth muscle

PMCID: PMC2215756  PMID: 6210760

Abstract

A method for "skinning" arterial smooth muscle is presented which yields isometric tension development typically 60-80% of maximum physiological tension in the presence of micromolar Ca++ and millimolar Mg-ATP, while retaining essentially the native protein content. Using the methods of "CA jump," the time-course of Ca++-activated tension development in the skinned artery can be made identical to, but not faster than, the rate of tension development in the intact artery. In the skinned artery, activating free [Ca++] does not substantially alter the rate at which tension development approaches the final steady tension attained at that free [Ca++] (less than 25% decline in speed for a 10-fold decrease in [Ca++]). These observations are taken to mean that the rate-limiting step in isometric tension development in arterial smooth muscle does not depend directly on Ca++.

Full Text

The Full Text of this article is available as a PDF (871.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen D. M., Murphy R. A. Differences in cellular contractile protein contents among porcine smooth muscles: evidence for variation in the contractile system. J Gen Physiol. 1978 Sep;72(3):369–380. doi: 10.1085/jgp.72.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Driska S. P., Aksoy M. O., Murphy R. A. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol. 1981 May;240(5):C222–C233. doi: 10.1152/ajpcell.1981.240.5.C222. [DOI] [PubMed] [Google Scholar]
  3. FILO R. S., BOHR D. F., RUEGG J. C. GLYCERINATED SKELETAL AND SMOOTH MUSCLE: CALCIUM AND MAGNESIUM DEPENDENCE. Science. 1965 Mar 26;147(3665):1581–1583. doi: 10.1126/science.147.3665.1581. [DOI] [PubMed] [Google Scholar]
  4. Glück E., Paul R. J. The aerobic metabolism of porcine carotid artery and its relationship to isometric force. Energy cost of isometric contraction. Pflugers Arch. 1977 Jul 29;370(1):9–18. doi: 10.1007/BF00707939. [DOI] [PubMed] [Google Scholar]
  5. Gordon A. R. Contraction of detergent-treated smooth muscle. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3527–3530. doi: 10.1073/pnas.75.7.3527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herzig J. W., Peterson J. W., Rüegg J. C., Solaro R. J. Vanadate and phosphate ions reduce tension and increase cross-bridge kinetics in chemically skinned heart muscle. Biochim Biophys Acta. 1981 Jan 21;672(2):191–196. doi: 10.1016/0304-4165(81)90392-5. [DOI] [PubMed] [Google Scholar]
  7. Kerrick W. G., Hoar P. E., Cassidy P. S. Calcium-activated tension: the role of myosin light chain phosphorylation. Fed Proc. 1980 Apr;39(5):1558–1563. [PubMed] [Google Scholar]
  8. Moisescu D. G. Kinetics of reaction in calcium-activated skinned muscle fibres. Nature. 1976 Aug 12;262(5569):610–613. doi: 10.1038/262610a0. [DOI] [PubMed] [Google Scholar]
  9. Mrwa U., Achtig I., Ruegg J. C. Influences of calcium concentration and pH on the tension development and ATPase activity of the arterial actomyosin contractile system. Blood Vessels. 1974;11(5-6):277–286. doi: 10.1159/000158021. [DOI] [PubMed] [Google Scholar]
  10. Mrwa U., Hartshorne D. J. Phosphorylation of smooth muscle myosin and myosin light chains. Fed Proc. 1980 Apr;39(5):1564–1568. [PubMed] [Google Scholar]
  11. Mrwa U., Troschka M., Rüegg J. C. Cyclic AMP-dependent inhibition of smooth muscle actomyosin. FEBS Lett. 1979 Nov 15;107(2):371–374. doi: 10.1016/0014-5793(79)80410-x. [DOI] [PubMed] [Google Scholar]
  12. Murphy R. A. Contractile proteins of vascular smooth muscle: effects of hydrogen and alkali metal cations on actomyosin adenosinetriphosphatase activity. Microvasc Res. 1969 Oct;1(4):344–353. doi: 10.1016/0026-2862(69)90013-2. [DOI] [PubMed] [Google Scholar]
  13. Murphy R. A., Herlihy J. T., Megerman J. Force-generating capacity and contractile protein content of arterial smooth muscle. J Gen Physiol. 1974 Dec;64(6):691–705. doi: 10.1085/jgp.64.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peterson J. W., 3rd Simple model of smooth muscle myosin phosphorylation and dephosphorylation as rate-limiting mechanism. Biophys J. 1982 Feb;37(2):453–459. doi: 10.1016/S0006-3495(82)84691-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peterson J. W. Vanadate ion inhibits actomyosin interaction in chemically skinned vascular smooth muscle. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1846–1853. doi: 10.1016/s0006-291x(80)80114-8. [DOI] [PubMed] [Google Scholar]
  16. Russell W. E. Insolubilization and activation of arterial actomyosin by bivalent cations. Eur J Biochem. 1973 Mar 15;33(3):459–466. doi: 10.1111/j.1432-1033.1973.tb02703.x. [DOI] [PubMed] [Google Scholar]
  17. Sparrow M. P., Mrwa U., Hofmann F., Rüegg J. C. Calmodulin is essential for smooth muscle contraction. FEBS Lett. 1981 Mar 23;125(2):141–145. doi: 10.1016/0014-5793(81)80704-1. [DOI] [PubMed] [Google Scholar]
  18. White D. C., Thorson J. Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle. J Gen Physiol. 1972 Sep;60(3):307–336. doi: 10.1085/jgp.60.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES