Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Mar 1;79(3):361–385. doi: 10.1085/jgp.79.3.361

Light-induced reduction in excitation efficiency in the trp mutant of Drosophila

PMCID: PMC2215757  PMID: 7077289

Abstract

In the transient receptor potential (trp) mutant of Drosophila, the receptor potential appears almost normal in response to a flash but quickly decays to baseline during prolonged illumination. Photometric and early receptor potential measurements of the pigment suggest that the pigment is normal and that the decay of the trp response during illumination does not arise from a reduction in the available photopigment molecules. However, there is reduction in pigment concentration with age. Light adaptation cannot account for the decay of the trp response during illumination: in normal Drosophila a dim background light shortens the latency and rise time of the response and also shifts the intensity response function (V-log I curve) to higher levels of light intensity with relatively little reduction in the maximal amplitude (Vmax) of response. In the trp mutant, a dim background light or short, strong adapting light paradoxically lengthens the latency and rise time of the response and substantially reduces Vmax without a pronounced shift of the V-log I curve along the I axis. The effect of adapting light on the latency and V-log I curve seen in trp are associated with a reduction in effective stimulus intensity (reduction in excitation efficiency) rather than with light adaptation. Removing extracellular Ca+2 reduces light adaptation in normal Drosophila, as evidenced by the appearance of "square" responses to strong illumination. In the trp mutant, removing extracellular Ca+2 does not prevent the decay of the response during illumination.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Hodgkin A. L. Changes in time scale and sensitivity in turtle photoreceptors. J Physiol. 1974 Nov;242(3):729–758. doi: 10.1113/jphysiol.1974.sp010732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bownds M. D. Biochemical steps in visual transduction: roles for nucleotides and calcium ions. Photochem Photobiol. 1980 Oct;32(4):487–490. doi: 10.1111/j.1751-1097.1980.tb03792.x. [DOI] [PubMed] [Google Scholar]
  3. Brown J. E., Blinks J. R. Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol. 1974 Dec;64(6):643–665. doi: 10.1085/jgp.64.6.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. E., Lisman J. E. Intracellular Ca modulates sensitivity and time scale in Limulus ventral photoreceptors. Nature. 1975 Nov 20;258(5532):252–254. doi: 10.1038/258252a0. [DOI] [PubMed] [Google Scholar]
  5. Coles J. A., Tsacopoulos M. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation. J Physiol. 1979 May;290(2):525–549. doi: 10.1113/jphysiol.1979.sp012788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cosens D. J., Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature. 1969 Oct 18;224(5216):285–287. doi: 10.1038/224285a0. [DOI] [PubMed] [Google Scholar]
  7. Cosens D., Perry M. M. The fine structure of the eye of a visual mutant, A-type of Drosophila melanogaster. J Insect Physiol. 1972 Sep;18(9):1773–1786. doi: 10.1016/0022-1910(72)90109-6. [DOI] [PubMed] [Google Scholar]
  8. Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
  9. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fein A., Charlton J. S. A quantitative comparison of the effects of intracellular calcium injection and light adaptation on the photoresponse of Limulus ventral photoreceptors. J Gen Physiol. 1977 Nov;70(5):591–600. doi: 10.1085/jgp.70.5.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris W. A., Stark W. S. Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. J Gen Physiol. 1977 Mar;69(3):261–291. doi: 10.1085/jgp.69.3.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ikeda K., Kaplan W. D. Patterned neural activity of a mutant Drosophila melanogaster. Proc Natl Acad Sci U S A. 1970 Jul;66(3):765–772. doi: 10.1073/pnas.66.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirschfeld K., Feiler R., Minke B. The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Z Naturforsch C. 1978 Nov-Dec;33(11-12):1009–1010. doi: 10.1515/znc-1978-11-1234. [DOI] [PubMed] [Google Scholar]
  14. Lisman J. E., Brown J. E. Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors. J Gen Physiol. 1975 Oct;66(4):489–506. doi: 10.1085/jgp.66.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lisman J. E. Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. Biophys J. 1976 Nov;16(11):1331–1335. doi: 10.1016/S0006-3495(76)85777-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lo M. V., Pak W. L. Light-induced pigment granule migration in the retinular cells of Drosophila melanogaster. Comparison of wild type with ERG-defective mutants. J Gen Physiol. 1981 Feb;77(2):155–175. doi: 10.1085/jgp.77.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Minke B. Drosophila mutant with a transducer defect. Biophys Struct Mech. 1977 Apr 21;3(1):59–64. doi: 10.1007/BF00536455. [DOI] [PubMed] [Google Scholar]
  20. Minke B., Kirschfeld K. Fast electrical potentials arising from activation of metarhodopsin in the fly. J Gen Physiol. 1980 Apr;75(4):381–402. doi: 10.1085/jgp.75.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Minke B., Kirschfeld K. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J Gen Physiol. 1979 May;73(5):517–540. doi: 10.1085/jgp.73.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minke B., Wu C., Pak W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975 Nov 6;258(5530):84–87. doi: 10.1038/258084a0. [DOI] [PubMed] [Google Scholar]
  23. Naka K. I., Rushton W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ostroy S. E. Characteristics of Drosophila rhodopsin in wild-type and norpA vision transduction mutants. J Gen Physiol. 1978 Nov;72(5):717–732. doi: 10.1085/jgp.72.5.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ostroy S. E., Wilson M., Pak W. L. Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. Biochem Biophys Res Commun. 1974 Aug 5;59(3):960–966. doi: 10.1016/s0006-291x(74)80073-2. [DOI] [PubMed] [Google Scholar]
  26. Pak W. L., Lidington K. J. Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J Gen Physiol. 1974 Jun;63(6):740–756. doi: 10.1085/jgp.63.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pober J. S., Bitensky M. W. Light-regulated enzymes of vertebrate retinal rods. Adv Cyclic Nucleotide Res. 1979;11:265–301. [PubMed] [Google Scholar]
  28. Shaw S. R. Retinal resistance barriers and electrical lateral inhibition. Nature. 1975 Jun 5;255(5508):480–482. doi: 10.1038/255480a0. [DOI] [PubMed] [Google Scholar]
  29. Stephenson R. S., Pak W. L. Heterogenic components of a fast electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. J Gen Physiol. 1980 Apr;75(4):353–379. doi: 10.1085/jgp.75.4.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsukahara Y. Effect of intracellular injection of EGTA and tetraethylammonium chloride on the receptor potential of locust photoreceptors. Photochem Photobiol. 1980 Oct;32(4):509–514. doi: 10.1111/j.1751-1097.1980.tb03796.x. [DOI] [PubMed] [Google Scholar]
  31. Wong F. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature. 1978 Nov 2;276(5683):76–79. doi: 10.1038/276076a0. [DOI] [PubMed] [Google Scholar]
  32. Wu C. F., Pak W. L. Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J Gen Physiol. 1978 Mar;71(3):249–268. doi: 10.1085/jgp.71.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wu C. F., Pak W. L. Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster. J Gen Physiol. 1975 Aug;66(2):149–168. doi: 10.1085/jgp.66.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES