Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1985 Jun 1;85(6):789–804. doi: 10.1085/jgp.85.6.789

The influence of chemical agents on the level of ionized [Ca2+] in squid axons

PMCID: PMC2215784  PMID: 2410536

Abstract

Squid giant axons injected with either aequorin or arsenazo III and bathed in 3 mM Ca (Na) seawater were transferred to 3 mM Ca (K) seawater and the response of the aequorin light or the change in the absorbance of arsenazo III was followed. These experimental conditions were chosen because they measure the change in the rate of Na/Ca exchange in introducing Ca into the axon upon depolarization; [Ca]o is too low to effect a channel-based system of Ca entry. This procedure was applied to axons treated with a variety of compounds that have been implicated as inhibitors of Na/Ca exchange. The result obtained was that the substances tested could be placed in three groups. (a) Substances that were without effect on Ca entry effected by Na/Ca exchange were: D600 at 10-100 microM, nitrendipine at 1-5 microM, Ba2+ and Mg2+ at concentrations of 10-50 mM, lidocaine at 0.1-10 mM, cyanide at 2 mM, adriamycin at a concentration of 3 microM, chloradenosine at 35 microM, 2,4-diaminopyridine at 1 mM, Cs+ at 45-90 mM, and tetrodotoxin at 10(-7). (b) Substances that had a significant inhibitory effect on Na/Ca exchange were: Mn2+, Cd2+, and La3+ at 1-50 mM, and quinidine at 50 microM. (c) There were also blocking agents and biochemical inhibitors whose action appeared to be the inhibition of nonmitochondrial Ca buffering in axoplasm rather than an inhibition of Na/Ca exchange. These were the general anesthetic l-octanol at 0.1 mM and 1 mM orthovanadate plus apyrase.

Full Text

The Full Text of this article is available as a PDF (877.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwater I., Dawson C. M., Ribalet B., Rojas E. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J Physiol. 1979 Mar;288:575–588. [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F., Meves H., Ridgway E. B. Calcium entry in response to maintained depolarization of squid axons. J Physiol. 1973 Jun;231(3):527–548. doi: 10.1113/jphysiol.1973.sp010247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Meves H., Ridgway E. B. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons. J Physiol. 1973 Jun;231(3):511–526. doi: 10.1113/jphysiol.1973.sp010246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker P. F., Schapira A. H. Anaesthetics increase light emission from aequorin at constant ionised calcium. Nature. 1980 Mar 13;284(5752):168–169. doi: 10.1038/284168a0. [DOI] [PubMed] [Google Scholar]
  6. Blaustein M. P., Hodgkin A. L. The effect of cyanide on the efflux of calcium from squid axons. J Physiol. 1969 Feb;200(2):497–527. doi: 10.1113/jphysiol.1969.sp008704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blinks J. R., Allen D. G., Prendergast F. G., Harrer G. C. Photoproteins as models of drug receptors. Life Sci. 1978 Apr 3;22(13-15):1237–1244. doi: 10.1016/0024-3205(78)90092-9. [DOI] [PubMed] [Google Scholar]
  9. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  10. Brinley F. J., Jr, Tiffert T., Scarpa A., Mullins L. J. Intracellular calcium buffering capacity in isolated squid axons. J Gen Physiol. 1977 Sep;70(3):355–384. doi: 10.1085/jgp.70.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DiPolo R., Caputo C., Bezanilla F. Voltage-dependent calcium channel in the squid axon. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1743–1745. doi: 10.1073/pnas.80.6.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DiPolo R., Rojas H. R., Beaugé L. Vanadate inhibits uncoupled Ca efflux but not Na--Ca exchange in squid axons. Nature. 1979 Sep 20;281(5728):229–230. doi: 10.1038/281228a0. [DOI] [PubMed] [Google Scholar]
  13. DiPolo R., Rojas H., Beaugé L. Ca entry at rest and during prolonged depolarization in dialyzed squid axons. Cell Calcium. 1982 Mar;3(1):19–41. doi: 10.1016/0143-4160(82)90035-5. [DOI] [PubMed] [Google Scholar]
  14. Dipolo R. The influence of nucleotides on calcium fluxes. Fed Proc. 1976 Dec;35(14):2579–2582. [PubMed] [Google Scholar]
  15. Fishman M. C., Spector I. Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5245–5249. doi: 10.1073/pnas.78.8.5245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haydon D. A., Urban B. W. The action of alcohols and other non-ionic surface active substances on the sodium current of the squid giant axon. J Physiol. 1983 Aug;341:411–427. doi: 10.1113/jphysiol.1983.sp014813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henon B. K., McAfee D. A. The ionic basis of adenosine receptor actions on post-ganglionic neurones in the rat. J Physiol. 1983 Mar;336:607–620. doi: 10.1113/jphysiol.1983.sp014600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mullins L. J., Requena J. The "late" Ca channel in squid axons. J Gen Physiol. 1981 Dec;78(6):683–700. doi: 10.1085/jgp.78.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mullins L. J., Tiffert T., Vassort G., Whittembury J. Effects of internal sodium and hydrogen ions and of external calcium ions and membrane potential on calcium entry in squid axons. J Physiol. 1983 May;338:295–319. doi: 10.1113/jphysiol.1983.sp014674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parker J. C. Sodium and calcium movements in dog red blood cells. J Gen Physiol. 1978 Jan;71(1):1–17. doi: 10.1085/jgp.71.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Requena J., DiPolo R., Brinley F. J., Jr, Mullins L. J. The control of ionized calcium in squid axons. J Gen Physiol. 1977 Sep;70(3):329–353. doi: 10.1085/jgp.70.3.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Breemen C., De Weer P. Lanthanum inhibition of 45Ca efflux from the squid giant axon. Nature. 1970 May 23;226(5247):760–761. doi: 10.1038/226760a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES