Abstract
We characterized the hyperpolarization of the electrical potential profile of flounder intestinal cells that accompanies inhibition of NaCl cotransport. Several observations indicate that hyperpolarization of psi a and psi b (delta psi a,b) results from inhibition of NaCl entry across the apical membrane: (a) the response was elicited by replacement of mucosal solution Cl or Na by nontransported ions, and (b) mucosal bumetanide or serosal cGMP, inhibitors of NaCl influx, elicited delta psi a,b and decreased the transepithelial potential (psi t) in parallel. Regardless of initial values, psi a and psi b approached the equilibrium potential for K (EK) so that in the steady state following inhibition of NaCl entry, psi a approximately equal to psi b approximately equal to ECl approximately equal to EK. Bumetanide decreased cell Cl activity (aClc) toward equilibrium levels. Bumetanide and cGMP decreased the fractional apical membrane resistance (fRa), increased the slope of the relation of psi a to [K]m, and decreased cellular conductance (Gc) by approximately 85%, which indicates a marked increase in basolateral membrane conductance (Gb). Since the basolateral membrane normally shows a high conductance to Cl, a direct relation between apical salt entry and GClb is suggested by these findings. As judged by the response to bumetanide or ion replacement in the presence of mucosal Ba, inhibition of Na/K/Cl co-transport alone is not sufficient to elicit delta psi a,b. This suggests the presence of a parallel NaCl co-transport mechanism that may be activated when Na/K/Cl co-transport is compromised. The delta psi a,b response to reduced apical NaCl entry would assist in maintaining the driving force for Na- coupled amino acid uptake across the apical membrane as luminal [NaCl] falls during absorption.
Full Text
The Full Text of this article is available as a PDF (991.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cremaschi D., Meyer G., Bermano S., Marcati M. Different sodium chloride cotransport systems in the apical membrane of rabbit gallbladder epithelial cells. J Membr Biol. 1983;73(3):227–235. doi: 10.1007/BF01870537. [DOI] [PubMed] [Google Scholar]
- Duffey M. E., Hainau B., Ho S., Bentzel C. J. Regulation of epithelial tight junction permeability by cyclic AMP. Nature. 1981 Dec 3;294(5840):451–453. doi: 10.1038/294451a0. [DOI] [PubMed] [Google Scholar]
- Duffey M. E., Thompson S. M., Frizzell R. A., Schultz S. G. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder. J Membr Biol. 1979 Nov 30;50(3-4):331–341. doi: 10.1007/BF01868896. [DOI] [PubMed] [Google Scholar]
- Ellory J. C., Flatman P. W., Stewart G. W. Inhibition of human red cell sodium and potassium transport by divalent cations. J Physiol. 1983 Jul;340:1–17. doi: 10.1113/jphysiol.1983.sp014746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernando Garcia-Diaz J., Corcia A., Armstrong W. M. Intracellular chloride activity and apical membrane chloride conductance in Necturus gallbladder. J Membr Biol. 1983;73(2):145–155. doi: 10.1007/BF01870438. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Halm D. R., Musch M. W., Stewart C. P., Field M. Potassium transport by flounder intestinal mucosa. Am J Physiol. 1984 Jun;246(6 Pt 2):F946–F951. doi: 10.1152/ajprenal.1984.246.6.F946. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Smith P. L., Vosburgh E., Field M. Coupled sodium-chloride influx across brush border of flounder intestine. J Membr Biol. 1979 Apr 12;46(1):27–39. doi: 10.1007/BF01959973. [DOI] [PubMed] [Google Scholar]
- Greger R., Schlatter E., Lang F. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1983 Mar;396(4):308–314. doi: 10.1007/BF01063936. [DOI] [PubMed] [Google Scholar]
- Halm D. R., Krasny E. J., Jr, Frizzell R. A. Electrophysiology of flounder intestinal mucosa. I. Conductance properties of the cellular and paracellular pathways. J Gen Physiol. 1985 Jun;85(6):843–864. doi: 10.1085/jgp.85.6.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hickman C. P., Jr Ingestion, intestinal absorption, and elimination of seawater and salts in the southern flounder, Paralichthys lethostigma. Can J Zool. 1968 May;46(3):457–466. doi: 10.1139/z68-063. [DOI] [PubMed] [Google Scholar]
- Katz U., Lau K. R., Ramos M. M., Ellory J. C. Thiocyanate transport across fish intestine (Pleuronectes platessa). J Membr Biol. 1982;66(1):9–14. doi: 10.1007/BF01868477. [DOI] [PubMed] [Google Scholar]
- Kirsch R., Meister M. F. Progressive processing of ingested water in the gut of sea-water teleosts. J Exp Biol. 1982 Jun;98:67–81. doi: 10.1242/jeb.98.1.67. [DOI] [PubMed] [Google Scholar]
- Musch M. W., Orellana S. A., Kimberg L. S., Field M., Halm D. R., Krasny E. J., Jr, Frizzell R. A. Na+-K+-Cl- co-transport in the intestine of a marine teleost. Nature. 1982 Nov 25;300(5890):351–353. doi: 10.1038/300351a0. [DOI] [PubMed] [Google Scholar]
- Oberleithner H., Giebisch G., Lang F., Wang W. Cellular Mechanism of the furosemide sensitive transport system in the kidney. Klin Wochenschr. 1982 Oct 1;60(19):1173–1179. doi: 10.1007/BF01716719. [DOI] [PubMed] [Google Scholar]
- Parmelee J. T., Renfro J. L. Esophageal desalination of seawater in flounder: role of active sodium transport. Am J Physiol. 1983 Dec;245(6):R888–R893. doi: 10.1152/ajpregu.1983.245.6.R888. [DOI] [PubMed] [Google Scholar]
- Petersen K. U., Reuss L. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1983 May;81(5):705–729. doi: 10.1085/jgp.81.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by "flush-through". Am J Physiol. 1981 Dec;241(6):F579–F590. doi: 10.1152/ajprenal.1981.241.6.F579. [DOI] [PubMed] [Google Scholar]
- Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J Membr Biol. 1984;77(3):187–199. doi: 10.1007/BF01870568. [DOI] [PubMed] [Google Scholar]
- Spring K. R., Ericson A. C. Epithelial cell volume modulation and regulation. J Membr Biol. 1982;69(3):167–176. doi: 10.1007/BF01870396. [DOI] [PubMed] [Google Scholar]