Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1985 Mar 1;85(3):347–363. doi: 10.1085/jgp.85.3.347

Role of solute drag in intestinal transport

PMCID: PMC2215792  PMID: 3989502

Abstract

This study presents experiments related to the role of solvent drag and solute drag in the transmembrane movement of nonelectrolytes in a perfused rat intestine preparation. Conditions were chosen to simulate the effects of luminal hyperosmolarity on the permeability of tracer solutes. Data are presented on net water flux, transepithelial potentials, and lumen-to-blood and blood-to-lumen tracer solute movements during control electrolyte perfusion and after making the perfusate hyperosmotic. The results indicate that both solvent drag and solute drag can play significant roles in the transepithelial movement of solute and solute permeabilities in the rat ileum preparation. It is suggested that the potential roles of solvent drag and solute drag should be accounted for or considered during the characterization of the mechanisms of biological membrane function.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN B., USSING H. H. Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol Scand. 1957 Jun 8;39(2-3):228–239. doi: 10.1111/j.1748-1716.1957.tb01425.x. [DOI] [PubMed] [Google Scholar]
  2. Altamirano M. Action of concentrated solutions of nonelectrolytes on the dog gastric mucosa. Am J Physiol. 1969 Jan;216(1):33–40. doi: 10.1152/ajplegacy.1969.216.1.33. [DOI] [PubMed] [Google Scholar]
  3. BIHLER I., HAWKINS K. A., CRANE R. K. Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na ion-dependent entrance of sugars into intestinal tissue under anaerobic conditions, in vitro. Biochim Biophys Acta. 1962 May 7;59:94–102. doi: 10.1016/0006-3002(62)90700-x. [DOI] [PubMed] [Google Scholar]
  4. Bentzel C. J., Parsa B., Hare D. K. Osmotic flow across proximal tubule of Necturus: correlation of physiologic and anatomic studies. Am J Physiol. 1969 Aug;217(2):570–580. doi: 10.1152/ajplegacy.1969.217.2.570. [DOI] [PubMed] [Google Scholar]
  5. Biber T. U., Curran P. F. Coupled solute fluxes in toad skin. J Gen Physiol. 1968 May;51(5):606–620. doi: 10.1085/jgp.51.5.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
  7. CURRAN P. F., SOLOMON A. K. Ion and water fluxes in the ileum of rats. J Gen Physiol. 1957 Sep 20;41(1):143–168. doi: 10.1085/jgp.41.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diamond J. M. Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist. 1977 Feb;20(1):10–18. [PubMed] [Google Scholar]
  11. Fordtran J. S., Rector F. C., Jr, Carter N. W. The mechanisms of sodium absorption in the human small intestine. J Clin Invest. 1968 Apr;47(4):884–900. doi: 10.1172/JCI105781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fordtran J. S., Rector F. C., Jr, Ewton M. F., Soter N., Kinney J. Permeability characteristics of the human small intestine. J Clin Invest. 1965 Dec;44(12):1935–1944. doi: 10.1172/JCI105299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franz T. J., Galey W. R., Van Bruggen J. T. Further observations on asymmetrical solute movement across membranes. J Gen Physiol. 1968 Jan;51(1):1–12. doi: 10.1085/jgp.51.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franz T. J., Van Bruggen J. T. Hyperosmolarity and the net transport of nonelectrolytes in frog skin. J Gen Physiol. 1967 Mar;50(4):933–949. doi: 10.1085/jgp.50.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galey W. R., Van Bruggen J. T. The coupling of solute fluxes in membranes. J Gen Physiol. 1970 Feb;55(2):220–242. doi: 10.1085/jgp.55.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HAKIM A. A., LIFSON N. UREA TRANSPORT ACROSS DOG INTESTINAL MUCOSA IN VITRO. Am J Physiol. 1964 Jun;206:1315–1320. doi: 10.1152/ajplegacy.1964.206.6.1315. [DOI] [PubMed] [Google Scholar]
  17. Humphreys M. H. Inhibition of NaCl absorption from perfused rat ileum by furosemide. Am J Physiol. 1976 Jun;230(6):1517–1523. doi: 10.1152/ajplegacy.1976.230.6.1517. [DOI] [PubMed] [Google Scholar]
  18. JOHNSTON J. M., WIGGANS D. S. The absorption in vitro of alanyl-phenylalanine. Biochim Biophys Acta. 1958 Jan;27(1):224–225. doi: 10.1016/0006-3002(58)90326-3. [DOI] [PubMed] [Google Scholar]
  19. Levitt D. G., Hakim A. A., Lifson N. Evaluation of components of transport of sugars by dog jejunum in vivo. Am J Physiol. 1969 Sep;217(3):777–783. doi: 10.1152/ajplegacy.1969.217.3.777. [DOI] [PubMed] [Google Scholar]
  20. Lief P. D., Essig A. Urea transport in the toad bladder; coupling of urea flows. J Membr Biol. 1973;12(2):159–176. doi: 10.1007/BF01869997. [DOI] [PubMed] [Google Scholar]
  21. Loeschke K., Bentzel C. J., Csáky T. Z. Asymmetry of osmotic flow in frog intestine: functional and structural correlation. Am J Physiol. 1970 Jun;218(6):1723–1731. doi: 10.1152/ajplegacy.1970.218.6.1723. [DOI] [PubMed] [Google Scholar]
  22. Loeschke K., Hare D., Csãky T. Z. Passive sugar flux across frog jejunum in vitro. Pflugers Arch. 1971;328(1):1–20. doi: 10.1007/BF00587357. [DOI] [PubMed] [Google Scholar]
  23. Machen T. E., Erlij D., Wooding F. B. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol. 1972 Aug;54(2):302–312. doi: 10.1083/jcb.54.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martínez-Palomo A., Erlij D. The distribution of lanthanum in tight junctions of the kidney tubule. Pflugers Arch. 1973 Oct 22;343(3):267–272. doi: 10.1007/BF00586049. [DOI] [PubMed] [Google Scholar]
  25. Murakami E., Saito M., Suda M. Contribution of diffusive pathway in intestinal absorption of glucose in rat under normal feeding condition. Experientia. 1977 Nov 15;33(11):1469–1470. doi: 10.1007/BF01918813. [DOI] [PubMed] [Google Scholar]
  26. Nellans H. N., Frizzell R. A., Schultz S. G. Coupled sodium-chloride influx across the brush border of rabbit ileum. Am J Physiol. 1973 Aug;225(2):467–475. doi: 10.1152/ajplegacy.1973.225.2.467. [DOI] [PubMed] [Google Scholar]
  27. Patlak C. S., Rapoport S. I. Theoretical analysis of net tracer flux due to volume circulation in a membrane with pores of different sizes. Relation to solute drag model. J Gen Physiol. 1971 Feb;57(2):113–124. doi: 10.1085/jgp.57.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quay J. F., Armstrong W. M. Sodium and chloride transport by isolated bullfrog small intestine. Am J Physiol. 1969 Sep;217(3):694–702. doi: 10.1152/ajplegacy.1969.217.3.694. [DOI] [PubMed] [Google Scholar]
  29. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  30. Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol. 1971 Jun;57(6):639–663. doi: 10.1085/jgp.57.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stender S., Kristensen K., Skadhauge E. Solvent drag by solute-linked water flow. A theoretical examination. J Membr Biol. 1973;11(4):377–398. doi: 10.1007/BF01869831. [DOI] [PubMed] [Google Scholar]
  32. USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
  33. Ussing H. H. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution. Ann N Y Acad Sci. 1966 Jul 14;137(2):543–555. doi: 10.1111/j.1749-6632.1966.tb50180.x. [DOI] [PubMed] [Google Scholar]
  34. Ussing H. H., Johansen B. Anomalous transport of sucrose and urea in toad skin. Nephron. 1969;6(3):317–328. doi: 10.1159/000179736. [DOI] [PubMed] [Google Scholar]
  35. Van Bruggen J. T., Boyett J. D., van Bueren A. L., Galey W. R. Solute flux coupling in a homopore membrane. J Gen Physiol. 1974 Jun;63(6):639–656. doi: 10.1085/jgp.63.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Van Bruggen J. T., Chalmers B., Muller M. Effects of solvent and solute drag on transmembrane diffusion. J Gen Physiol. 1982 Mar;79(3):507–528. doi: 10.1085/jgp.79.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. White J. F., Armstrong W. M. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am J Physiol. 1971 Jul;221(1):194–201. doi: 10.1152/ajplegacy.1971.221.1.194. [DOI] [PubMed] [Google Scholar]
  38. Whittembury G., Rawlins F. A. Evidence of a paracellular pathway for ion flow in the kidney proximal tubule. Electromicroscopic demonstration of lanthanum precipitate in the tight junction. Pflugers Arch. 1971;330(4):302–309. doi: 10.1007/BF00588582. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES