Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1985 Feb 1;85(2):171–187. doi: 10.1085/jgp.85.2.171

The role of metarhodopsin in the generation of spontaneous quantum bumps in ultraviolet receptors of Limulus median eye. Evidence for reverse reactions into an active state

PMCID: PMC2215799  PMID: 3981127

Abstract

The origin of spontaneous quantum bumps has been examined in the ultraviolet photoreceptors of Limulus median eye. These cells have a rhodopsin with a lambda max at 360 nm and a stable photoproduct, metarhodopsin, with a lambda max at 470 nm. The steady state rate of spontaneous quantum bumps was found to be higher when the metarhodopsin concentration was high than when the rhodopsin concentration was high. This result implicates metarhodopsin in the generation of spontaneous quantum bumps. Furthermore, this result is consistent with the idea that the reaction which inactivates metarhodopsin (terminates the ability of metarhodopsin to initiate the reactions leading to a quantum bump) is reversible and that such reversions can be a significant source of spontaneous quantum bumps. Given that the rate of spontaneous quantum bumps is approximately 1/s under conditions where the number of inactive metarhodopsin molecules is approximately 10(9), it follows that the molecular switch that inactivates metarhodopsin reverses with a probability of less than 10(-9). A model is presented of how a molecular switch with this reliability might be constructed.

Full Text

The Full Text of this article is available as a PDF (948.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alpern M., Ohba N. The effect of bleaching and backgrounds on pupil size. Vision Res. 1972 May;12(5):943–951. doi: 10.1016/0042-6989(72)90016-8. [DOI] [PubMed] [Google Scholar]
  3. Bacigalupo J., Lisman J. E. Single-channel currents activated by light in Limulus ventral photoreceptors. Nature. 1983 Jul 21;304(5923):268–270. doi: 10.1038/304268a0. [DOI] [PubMed] [Google Scholar]
  4. Baylor D. A., Lamb T. D., Yau K. W. Responses of retinal rods to single photons. J Physiol. 1979 Mar;288:613–634. [PMC free article] [PubMed] [Google Scholar]
  5. Baylor D. A., Matthews G., Yau K. W. Two components of electrical dark noise in toad retinal rod outer segments. J Physiol. 1980 Dec;309:591–621. doi: 10.1113/jphysiol.1980.sp013529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bolsover S. R., Brown J. E. Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells. J Physiol. 1982 Nov;332:325–342. doi: 10.1113/jphysiol.1982.sp014416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brin K. P., Ripps H. Rhodopsin photoproducts and rod sensitivity in the skate retina. J Gen Physiol. 1977 Jan;69(1):97–120. doi: 10.1085/jgp.69.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cornwall M. C., Fein A., MacNichol E. F., Jr Spatial localization of bleaching adaptation in isolated vertebrate rod photoreceptors. Proc Natl Acad Sci U S A. 1983 May;80(9):2785–2788. doi: 10.1073/pnas.80.9.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Corson D. W., Fein A. Chemical excitation of Limulus photoreceptors. I. Phosphatase inhibitors induce discrete-wave production in the dark. J Gen Physiol. 1983 Nov;82(5):639–657. doi: 10.1085/jgp.82.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FUORTES M. G., YEANDLE S. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS. J Gen Physiol. 1964 Jan;47:443–463. doi: 10.1085/jgp.47.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fein A., Corson D. W. Excitation of Limulus photoreceptors by vanadate and by a hydrolysis-resistant analog of guanosine triphosphate. Science. 1981 May 1;212(4494):555–557. doi: 10.1126/science.6782676. [DOI] [PubMed] [Google Scholar]
  12. Fein A., Hanani M. Light-induced increase in discrete waves in the dark in Limulus ventral photoreceptors. Brain Res. 1978 Nov 3;156(1):157–161. doi: 10.1016/0006-8993(78)90093-8. [DOI] [PubMed] [Google Scholar]
  13. Fukami Y., Lipmann F. Reversal of Rous sarcoma-specific immunoglobulin phosphorylation on tyrosine (ADP as phosphate acceptor) catalyzed by the src gene kinase. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1872–1876. doi: 10.1073/pnas.80.7.1872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagins W. A., McGaughy R. E. Molecular and thermal origins of fast photoelectric effects in the squid retina. Science. 1967 Aug 18;157(3790):813–816. doi: 10.1126/science.157.3790.813. [DOI] [PubMed] [Google Scholar]
  15. Hillman P., Hochstein S., Minke B. Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Rev. 1983 Apr;63(2):668–772. doi: 10.1152/physrev.1983.63.2.668. [DOI] [PubMed] [Google Scholar]
  16. Kaplan E., Barlow R. B., Jr Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature. 1980 Jul 24;286(5771):393–395. doi: 10.1038/286393a0. [DOI] [PubMed] [Google Scholar]
  17. Kirschfeld K., Feiler R., Minke B. The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Z Naturforsch C. 1978 Nov-Dec;33(11-12):1009–1010. doi: 10.1515/znc-1978-11-1234. [DOI] [PubMed] [Google Scholar]
  18. Lamb T. D. Spontaneous quantal events induced in toad rods by pigment bleaching. Nature. 1980 Sep 25;287(5780):349–351. doi: 10.1038/287349a0. [DOI] [PubMed] [Google Scholar]
  19. Lamb T. D. The involvement of rod photoreceptors in dark adaptation. Vision Res. 1981;21(12):1773–1782. doi: 10.1016/0042-6989(81)90211-x. [DOI] [PubMed] [Google Scholar]
  20. Lisman J. E., Bering H. Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors. J Gen Physiol. 1977 Nov;70(5):621–633. doi: 10.1085/jgp.70.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lisman J. E., Sheline Y. Analysis of the rhodopsin cycle in limulus ventral photoreceptors using the early receptor potential. J Gen Physiol. 1976 Nov;68(5):487–501. doi: 10.1085/jgp.68.5.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minke B., Hochstein S., Hillman P. Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J Gen Physiol. 1973 Jul;62(1):87–104. doi: 10.1085/jgp.62.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Minke B., Wu C., Pak W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975 Nov 6;258(5530):84–87. doi: 10.1038/258084a0. [DOI] [PubMed] [Google Scholar]
  24. Nolte J., Brown J. E. The spectral sensitivities of single receptor cells in the lateral, median, and ventral eyes of normal and white-eyed Limulus. J Gen Physiol. 1970 Jun;55(6):787–801. doi: 10.1085/jgp.55.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nolte J., Brown J. E. Ultraviolet-induced sensitivity to visible light in ultraviolet receptors of Limulus. J Gen Physiol. 1972 Feb;59(2):186–200. doi: 10.1085/jgp.59.2.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pepperberg D. R., Lurie M., Brown P. K., Dowling J. E. Visual adaptation: effects of externally applied retinal on the light-adapted, isolated skate retina. Science. 1976 Jan 30;191(4225):394–396. doi: 10.1126/science.1246621. [DOI] [PubMed] [Google Scholar]
  27. RABINOWITZ M., LIPMANN F. Reversible phosphate transfer between yolk phosphoprotein and adenosine triphosphate. J Biol Chem. 1960 Apr;235:1043–1050. [PubMed] [Google Scholar]
  28. Shizuta Y., Beavo J. A., Bechtel P. J., Hofmann F., Krebs E. G. Reversibility of adenosine 3':5'-monophosphate-dependent protein kinase reactions. J Biol Chem. 1975 Sep 10;250(17):6891–6896. [PubMed] [Google Scholar]
  29. Sitaramayya A., Liebman P. A. Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. J Biol Chem. 1983 Oct 25;258(20):12106–12109. [PubMed] [Google Scholar]
  30. Srebro R., Behbehani M. The thermal origin of spontaneous activity in the Limulus photoreceptor. J Physiol. 1972 Jul;224(2):349–361. doi: 10.1113/jphysiol.1972.sp009899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stern J., Chinn K., Robinson P., Lisman J. The effect of nucleotides on the rate of spontaneous quantum bumps in Limulus ventral photoreceptors. J Gen Physiol. 1985 Feb;85(2):157–169. doi: 10.1085/jgp.85.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vandenberg C. A., Montal M. Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes. Biochemistry. 1984 May 22;23(11):2347–2352. doi: 10.1021/bi00306a004. [DOI] [PubMed] [Google Scholar]
  33. Weinstein G. W., Hobson R. R., Dowling J. E. Light and dark adaptation in the isolated rat retina. Nature. 1967 Jul 8;215(5097):134–138. doi: 10.1038/215134a0. [DOI] [PubMed] [Google Scholar]
  34. Wilden U., Kühn H. Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry. 1982 Jun 8;21(12):3014–3022. doi: 10.1021/bi00541a032. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES