Abstract
Noise analysis of the Na+ channels of the apical membranes of frog skin bathed symmetrically in a Cl-HCO3 Ringer solution was done with amiloride and CGS 4270. Tissues were studied in their control states and after inhibition of transepithelial Na+ transport (Isc) by addition of quinine or quinidine to the apical solution. A critical examination of the amiloride-induced noise indicated that the single channel Na+ currents (iNa) were decreased by quinine and quinidine, probably because of depolarization of apical membrane voltage. Despite considerable statistical uncertainty in the methods of estimation of the Na+ channel density with amiloride-induced noise (NA, see text), the striking observation was a large increase of NA with amiloride inhibition of the rate of Na+ entry into the cells. NA was increased to 406% of control, whereas Isc was inhibited to 8.6% of control by 6 microM amiloride. Studies were done also with the Na+ channel blocker CGS 4270. Noise analysis with this compound was advantageous, permitting iCGSNa and NCGS to be measured in individual tissues with a relatively small inhibition of Isc. As with amiloride, inhibition of Isc with CGS 4270 caused large increases of the Na+ channel density (approximately 200% at approximately 35% inhibition of the Isc). Quinine and quinidine caused an approximately 50% increase of Na+ channel density while inhibiting iNa by approximately 60-70%. As inhibition of Na+ entry leads to an increase of Na+ channel density, a mechanism of autoregulation appears to be a major factor in adjusting the apical membrane Na+ permeability of the cells.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoli T. E., Schafer J. A. Mass transport across cell membranes: the effects of antidiuretic hormone on water and solute flows in epithelia. Annu Rev Physiol. 1976;38:451–500. doi: 10.1146/annurev.ph.38.030176.002315. [DOI] [PubMed] [Google Scholar]
- Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
- Benos D. J., Watthey J. W. Inferences on the nature of the apical sodium entry site in frog skin epithelium. J Pharmacol Exp Ther. 1981 Nov;219(2):481–488. [PubMed] [Google Scholar]
- Cuthbert A. W., Maetz J. Amiloride and sodium fluxes across fish gills in fresh water and in sea water. Comp Biochem Physiol A Comp Physiol. 1972 Sep 1;43(1):227–232. doi: 10.1016/0300-9629(72)90487-2. [DOI] [PubMed] [Google Scholar]
- Els W. J., Helman S. I. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: studies with microelectrodes. Am J Physiol. 1981 Sep;241(3):F279–F288. doi: 10.1152/ajprenal.1981.241.3.F279. [DOI] [PubMed] [Google Scholar]
- García-Romeu F. Stimulation of sodium transport in frog skin by 2-imidazolines (guanidinbenzimidazole and phentolamine). Life Sci. 1974 Aug 1;15(3):539–542. doi: 10.1016/0024-3205(74)90351-8. [DOI] [PubMed] [Google Scholar]
- Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman S. I., Cox T. C., Van Driessche W. Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis. J Gen Physiol. 1983 Aug;82(2):201–220. doi: 10.1085/jgp.82.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman S. I. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models. Fed Proc. 1979 Dec;38(13):2743–2750. [PubMed] [Google Scholar]
- Helman S. I., Miller D. A. In vitro techniques for avoiding edge damage in studies of frog skin. Science. 1971 Jul 9;173(3992):146–148. doi: 10.1126/science.173.3992.146. [DOI] [PubMed] [Google Scholar]
- KIRSCHNER L. B. On the mechanism of active sodium transport across the frog skin. J Cell Physiol. 1955 Feb;45(1):61–87. doi: 10.1002/jcp.1030450106. [DOI] [PubMed] [Google Scholar]
- Lewis S. A., de Moura J. L. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature. 1982 Jun 24;297(5868):685–688. doi: 10.1038/297685a0. [DOI] [PubMed] [Google Scholar]
- Li J. H., Lindemann B. Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium. J Membr Biol. 1983;75(3):179–192. doi: 10.1007/BF01871949. [DOI] [PubMed] [Google Scholar]
- Li J. H., de Sousa R. C. Inhibitory and stimulatory effects of amiloride analogues on sodium transport in frog skin. J Membr Biol. 1979 Apr 20;46(2):155–169. doi: 10.1007/BF01961378. [DOI] [PubMed] [Google Scholar]
- Lindemann B. Fluctuation analysis of sodium channels in epithelia. Annu Rev Physiol. 1984;46:497–515. doi: 10.1146/annurev.ph.46.030184.002433. [DOI] [PubMed] [Google Scholar]
- Lindemann B., Van Driessche W. Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science. 1977 Jan 21;195(4275):292–294. doi: 10.1126/science.299785. [DOI] [PubMed] [Google Scholar]
- Loo D. D., Lewis S. A., Ifshin M. S., Diamond J. M. Turnover, membrane insertion, and degradation of sodium channels in rabbit urinary bladder. Science. 1983 Sep 23;221(4617):1288–1290. doi: 10.1126/science.6612343. [DOI] [PubMed] [Google Scholar]
- Minsky B. D., Chlapowski F. J. Morphometric analysis of the translocation of lumenal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder. J Cell Biol. 1978 Jun;77(3):685–697. doi: 10.1083/jcb.77.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orloff J., Handler J. The role of adenosine 3',5'-phosphate in the action of antidiuretic hormone. Am J Med. 1967 May;42(5):757–768. doi: 10.1016/0002-9343(67)90093-9. [DOI] [PubMed] [Google Scholar]
- Pumplin D. W., Fambrough D. M. Turnover of acetylcholine receptors in skeletal muscle. Annu Rev Physiol. 1982;44:319–335. doi: 10.1146/annurev.ph.44.030182.001535. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Schultz S. G. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by "flush-through". Am J Physiol. 1981 Dec;241(6):F579–F590. doi: 10.1152/ajprenal.1981.241.6.F579. [DOI] [PubMed] [Google Scholar]
- Stetson D. L., Steinmetz P. R. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am J Physiol. 1983 Jul;245(1):C113–C120. doi: 10.1152/ajpcell.1983.245.1.C113. [DOI] [PubMed] [Google Scholar]
- Taylor A., Windhager E. E. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol. 1979 Jun;236(6):F505–F512. doi: 10.1152/ajprenal.1979.236.6.F505. [DOI] [PubMed] [Google Scholar]
- Thurman C. L., Higgins J. T., Jr Amiloride stimulation of sodium transport in the presence of calcium and a divalent cation chelator. Biochim Biophys Acta. 1982 Aug 12;689(3):561–566. doi: 10.1016/0005-2736(82)90314-5. [DOI] [PubMed] [Google Scholar]
- Van Driessche W., Zeiske W. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria). J Membr Biol. 1980 Aug 21;56(1):31–42. doi: 10.1007/BF01869349. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Stetson D. L., Lewis S. A. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–117. doi: 10.1111/j.1749-6632.1981.tb15464.x. [DOI] [PubMed] [Google Scholar]
- Windhager E. E., Taylor A. Regulatory role of intracellular calcium ions in epithelial Na transport. Annu Rev Physiol. 1983;45:519–532. doi: 10.1146/annurev.ph.45.030183.002511. [DOI] [PubMed] [Google Scholar]
- Zeiske W., Lindemann B. Chemical stimulation of Na + current through the outer surface of frog skin epithelium. Biochim Biophys Acta. 1974 Jun 13;352(2):323–326. doi: 10.1016/0005-2736(74)90223-5. [DOI] [PubMed] [Google Scholar]
