Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1985 Apr 1;85(4):555–582. doi: 10.1085/jgp.85.4.555

Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270

PMCID: PMC2215807  PMID: 2409219

Abstract

Noise analysis of the Na+ channels of the apical membranes of frog skin bathed symmetrically in a Cl-HCO3 Ringer solution was done with amiloride and CGS 4270. Tissues were studied in their control states and after inhibition of transepithelial Na+ transport (Isc) by addition of quinine or quinidine to the apical solution. A critical examination of the amiloride-induced noise indicated that the single channel Na+ currents (iNa) were decreased by quinine and quinidine, probably because of depolarization of apical membrane voltage. Despite considerable statistical uncertainty in the methods of estimation of the Na+ channel density with amiloride-induced noise (NA, see text), the striking observation was a large increase of NA with amiloride inhibition of the rate of Na+ entry into the cells. NA was increased to 406% of control, whereas Isc was inhibited to 8.6% of control by 6 microM amiloride. Studies were done also with the Na+ channel blocker CGS 4270. Noise analysis with this compound was advantageous, permitting iCGSNa and NCGS to be measured in individual tissues with a relatively small inhibition of Isc. As with amiloride, inhibition of Isc with CGS 4270 caused large increases of the Na+ channel density (approximately 200% at approximately 35% inhibition of the Isc). Quinine and quinidine caused an approximately 50% increase of Na+ channel density while inhibiting iNa by approximately 60-70%. As inhibition of Na+ entry leads to an increase of Na+ channel density, a mechanism of autoregulation appears to be a major factor in adjusting the apical membrane Na+ permeability of the cells.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Schafer J. A. Mass transport across cell membranes: the effects of antidiuretic hormone on water and solute flows in epithelia. Annu Rev Physiol. 1976;38:451–500. doi: 10.1146/annurev.ph.38.030176.002315. [DOI] [PubMed] [Google Scholar]
  2. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  3. Benos D. J., Watthey J. W. Inferences on the nature of the apical sodium entry site in frog skin epithelium. J Pharmacol Exp Ther. 1981 Nov;219(2):481–488. [PubMed] [Google Scholar]
  4. Cuthbert A. W., Maetz J. Amiloride and sodium fluxes across fish gills in fresh water and in sea water. Comp Biochem Physiol A Comp Physiol. 1972 Sep 1;43(1):227–232. doi: 10.1016/0300-9629(72)90487-2. [DOI] [PubMed] [Google Scholar]
  5. Els W. J., Helman S. I. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: studies with microelectrodes. Am J Physiol. 1981 Sep;241(3):F279–F288. doi: 10.1152/ajprenal.1981.241.3.F279. [DOI] [PubMed] [Google Scholar]
  6. García-Romeu F. Stimulation of sodium transport in frog skin by 2-imidazolines (guanidinbenzimidazole and phentolamine). Life Sci. 1974 Aug 1;15(3):539–542. doi: 10.1016/0024-3205(74)90351-8. [DOI] [PubMed] [Google Scholar]
  7. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Helman S. I., Cox T. C., Van Driessche W. Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis. J Gen Physiol. 1983 Aug;82(2):201–220. doi: 10.1085/jgp.82.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helman S. I. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models. Fed Proc. 1979 Dec;38(13):2743–2750. [PubMed] [Google Scholar]
  10. Helman S. I., Miller D. A. In vitro techniques for avoiding edge damage in studies of frog skin. Science. 1971 Jul 9;173(3992):146–148. doi: 10.1126/science.173.3992.146. [DOI] [PubMed] [Google Scholar]
  11. KIRSCHNER L. B. On the mechanism of active sodium transport across the frog skin. J Cell Physiol. 1955 Feb;45(1):61–87. doi: 10.1002/jcp.1030450106. [DOI] [PubMed] [Google Scholar]
  12. Lewis S. A., de Moura J. L. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature. 1982 Jun 24;297(5868):685–688. doi: 10.1038/297685a0. [DOI] [PubMed] [Google Scholar]
  13. Li J. H., Lindemann B. Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium. J Membr Biol. 1983;75(3):179–192. doi: 10.1007/BF01871949. [DOI] [PubMed] [Google Scholar]
  14. Li J. H., de Sousa R. C. Inhibitory and stimulatory effects of amiloride analogues on sodium transport in frog skin. J Membr Biol. 1979 Apr 20;46(2):155–169. doi: 10.1007/BF01961378. [DOI] [PubMed] [Google Scholar]
  15. Lindemann B. Fluctuation analysis of sodium channels in epithelia. Annu Rev Physiol. 1984;46:497–515. doi: 10.1146/annurev.ph.46.030184.002433. [DOI] [PubMed] [Google Scholar]
  16. Lindemann B., Van Driessche W. Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science. 1977 Jan 21;195(4275):292–294. doi: 10.1126/science.299785. [DOI] [PubMed] [Google Scholar]
  17. Loo D. D., Lewis S. A., Ifshin M. S., Diamond J. M. Turnover, membrane insertion, and degradation of sodium channels in rabbit urinary bladder. Science. 1983 Sep 23;221(4617):1288–1290. doi: 10.1126/science.6612343. [DOI] [PubMed] [Google Scholar]
  18. Minsky B. D., Chlapowski F. J. Morphometric analysis of the translocation of lumenal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder. J Cell Biol. 1978 Jun;77(3):685–697. doi: 10.1083/jcb.77.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orloff J., Handler J. The role of adenosine 3',5'-phosphate in the action of antidiuretic hormone. Am J Med. 1967 May;42(5):757–768. doi: 10.1016/0002-9343(67)90093-9. [DOI] [PubMed] [Google Scholar]
  20. Pumplin D. W., Fambrough D. M. Turnover of acetylcholine receptors in skeletal muscle. Annu Rev Physiol. 1982;44:319–335. doi: 10.1146/annurev.ph.44.030182.001535. [DOI] [PubMed] [Google Scholar]
  21. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  22. Schultz S. G. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by "flush-through". Am J Physiol. 1981 Dec;241(6):F579–F590. doi: 10.1152/ajprenal.1981.241.6.F579. [DOI] [PubMed] [Google Scholar]
  23. Stetson D. L., Steinmetz P. R. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am J Physiol. 1983 Jul;245(1):C113–C120. doi: 10.1152/ajpcell.1983.245.1.C113. [DOI] [PubMed] [Google Scholar]
  24. Taylor A., Windhager E. E. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol. 1979 Jun;236(6):F505–F512. doi: 10.1152/ajprenal.1979.236.6.F505. [DOI] [PubMed] [Google Scholar]
  25. Thurman C. L., Higgins J. T., Jr Amiloride stimulation of sodium transport in the presence of calcium and a divalent cation chelator. Biochim Biophys Acta. 1982 Aug 12;689(3):561–566. doi: 10.1016/0005-2736(82)90314-5. [DOI] [PubMed] [Google Scholar]
  26. Van Driessche W., Zeiske W. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria). J Membr Biol. 1980 Aug 21;56(1):31–42. doi: 10.1007/BF01869349. [DOI] [PubMed] [Google Scholar]
  27. Wade J. B., Stetson D. L., Lewis S. A. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–117. doi: 10.1111/j.1749-6632.1981.tb15464.x. [DOI] [PubMed] [Google Scholar]
  28. Windhager E. E., Taylor A. Regulatory role of intracellular calcium ions in epithelial Na transport. Annu Rev Physiol. 1983;45:519–532. doi: 10.1146/annurev.ph.45.030183.002511. [DOI] [PubMed] [Google Scholar]
  29. Zeiske W., Lindemann B. Chemical stimulation of Na + current through the outer surface of frog skin epithelium. Biochim Biophys Acta. 1974 Jun 13;352(2):323–326. doi: 10.1016/0005-2736(74)90223-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES