Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1985 Apr 1;85(4):519–537. doi: 10.1085/jgp.85.4.519

Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives

PMCID: PMC2215808  PMID: 2409217

Abstract

When giant axons of squid, Sepioteuthis, were bathed in a 100 mM Ca- salt solution containing tetrodotoxin (TTX) and internally perfused with a solution of 100 mM tetraethylammonium-salt (TEA-salt) or tetramethylammonium-salt (TMA-salt), the membrane potential was found to become sensitive to anions, especially Cl-. Membrane currents recorded from those axons showed practically no time-dependent properties, but they had a strong voltage-dependent characteristic, i.e., outward rectification. Cl- had a strong effect upon the voltage- dependent membrane currents. The nonlinear property of the currents was almost completely suppressed by some disulfonic stilbene derivatives applied intracellularly, such as 4-acetoamido-4'-isothiocyanostilbene- 2,2'-disulfonic acid (SITS) and as 4,4'-diisothiocyanostilbene-2,2'- disulfonic acid (DIDS), which are blockers of chloride transport. On the basis of these experimental results, it is concluded that a voltage- dependent chloride-permeable channel exists in the squid axon membrane. The chloride permeability (PCl) is a function of voltage, and its value at the resting membrane (Em = -60 mV) is calculated, using the Goldman- Hodgkin-Katz equation, to be 3.0 X 10(-7) cm/s.

Full Text

The Full Text of this article is available as a PDF (900.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELMAN W. J., TAYLOR R. E. Leakage current rectification in the squid giant axon. Nature. 1961 Jun 3;190:883–885. doi: 10.1038/190883a0. [DOI] [PubMed] [Google Scholar]
  2. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRINLEY F. J., Jr, MULLINS L. J. ION FLUXES AND TRANSFERENCE NUMBER IN SQUID AXONS. J Neurophysiol. 1965 May;28:526–544. doi: 10.1152/jn.1965.28.3.526. [DOI] [PubMed] [Google Scholar]
  4. Barish M. E. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol. 1983 Sep;342:309–325. doi: 10.1113/jphysiol.1983.sp014852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blatz A. L., Magleby K. L. Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle. Biophys J. 1983 Aug;43(2):237–241. doi: 10.1016/S0006-3495(83)84344-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CALDWELL P. C., KEYNES R. D. The permeability of the squid giant axon to radioactive potassium and chloride ions. J Physiol. 1960 Nov;154:177–189. doi: 10.1113/jphysiol.1960.sp006572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
  8. Clarke S. The size and detergent binding of membrane proteins. J Biol Chem. 1975 Jul 25;250(14):5459–5469. [PubMed] [Google Scholar]
  9. Conti F., Inoue I., Kukita F., Stühmer W. Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J. 1984;11(2):137–147. doi: 10.1007/BF00276629. [DOI] [PubMed] [Google Scholar]
  10. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  11. HILL D. K. The volume change resulting from stimulation of a giant nerve fibre. J Physiol. 1950 Oct 16;111(3-4):304–327. doi: 10.1113/jphysiol.1950.sp004481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagiwara S., Takahashi K. Mechanism of anion permeation through the muscle fibre membrane of an elasmobranch fish, Taeniura lymma. J Physiol. 1974 Apr;238(1):109–127. doi: 10.1113/jphysiol.1974.sp010513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ho M. K., Guidotti G. A membrane protein from human erythrocytes involved in anion exchange. J Biol Chem. 1975 Jan 25;250(2):675–683. [PubMed] [Google Scholar]
  16. Hutter O. F., Warner A. E. The voltage dependence of the chloride conductance of frog muscle. J Physiol. 1972 Dec;227(1):275–290. doi: 10.1113/jphysiol.1972.sp010032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inoue I. Activation-inactivation of potassium channels and development of the potassium-channel spike in internally perfused squid giant axons. J Gen Physiol. 1981 Jul;78(1):43–61. doi: 10.1085/jgp.78.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inoue I., Pant H. C., Tasaki I., Gainer H. Release of proteins from the inner surface of squid axon membrane labeled with tritiated N-ethylmaleimide. J Gen Physiol. 1976 Oct;68(4):385–395. doi: 10.1085/jgp.68.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Inoue I. Separation of the action potential into a Na-channel spike and a K-channel spike by tetrodotoxin and by tetraethylammonium ion in squid giant axons internally perfused with dilute Na-salt solutions. J Gen Physiol. 1980 Sep;76(3):337–354. doi: 10.1085/jgp.76.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kasai M., Kometani T. Inhibition of anion permeability of sarcoplasmic reticulum vesicles by 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonate. Biochim Biophys Acta. 1979 Oct 19;557(1):243–247. doi: 10.1016/0005-2736(79)90106-8. [DOI] [PubMed] [Google Scholar]
  21. Kasai M., Taguchi T. Inhibition of anion permeability of sarcoplasmic reticulum vesicles by stilbene derivatives and the identification of an inhibitor-binding protein. Biochim Biophys Acta. 1981 Apr 22;643(1):213–219. doi: 10.1016/0005-2736(81)90234-0. [DOI] [PubMed] [Google Scholar]
  22. Knauf P. A., Rothstein A. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol. 1971 Aug;58(2):190–210. doi: 10.1085/jgp.58.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palade P. T., Barchi R. L. Characteristics of the chloride conductance in muscle fibers of the rat diaphragm. J Gen Physiol. 1977 Mar;69(3):325–342. doi: 10.1085/jgp.69.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
  25. Russell J. M. Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process. J Gen Physiol. 1983 Jun;81(6):909–925. doi: 10.1085/jgp.81.6.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Russell J. M. Chloride and sodium influx: a coupled uptake mechanism in the squid giant axon. J Gen Physiol. 1979 Jun;73(6):801–818. doi: 10.1085/jgp.73.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tasaki I., Singer I., Takenaka T. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J Gen Physiol. 1965 Jul;48(6):1095–1123. doi: 10.1085/jgp.48.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. White M. M., Miller C. Probes of the conduction process of a voltage-gated Cl- channel from Torpedo electroplax. J Gen Physiol. 1981 Jul;78(1):1–18. doi: 10.1085/jgp.78.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES