Abstract
Phosphorylation of red cell membranes at ambient temperatures with micromolar [32P]ATP in the presence of Na ions produced phosphoenzyme that was dephosphorylated rapidly upon the addition of ADP or K ions. However, as first observed by Blostein (1968, J. Biol. Chem., 243:1957), the phosphoenzyme formed at 0 degrees C under otherwise identical conditions was insensitive to the addition of K ions but was dephosphorylated rapidly by ADP. This suggested that the conformational transition from ADP-sensitive, K-insensitive Na pump phosphoenzyme (E1 approximately P) to K-sensitive, ADP-insensitive phosphoenzyme (E2P) is blocked at 0 degrees C. Since the ATP:ADP exchange reaction is a partial reaction of the overall enzyme cycle dependent upon the steady state level of E1 approximately P that is regulated by [Na], we examined the effects of temperature on the curve relating [Na] to ouabain-sensitive ATP:ADP exchange. The characteristic triphasic curve seen at higher temperatures when [Na] was between 0.5 and 100 mM was not obtained at 0 degrees C. Simple saturation was observed instead with a K0.5 for Na of approximately 1 mM. The effect of increasing temperature on the ATP:ADP exchange at fixed (150 mM) Na was compared with the effect of increasing temperature on (Na + K)-ATPase activity of the same membrane preparation. It was observed that (a) at 0 degrees C, there was significant ouabain-sensitive ATP:ADP exchange activity, (b) at 0 degrees C, ouabain-sensitive (Na + K)-ATPase activity was virtually absent, and (c) in the temperature range 5-37 degrees C, there was an approximately 300-fold increase in (Na + K)-ATPase activity with only a 9-fold increase in the ATP:ADP exchange. These observations are in keeping with the suggestion that the E1 approximately P----E2P transition of the Na pump in human red cell membranes is blocked at 0 degrees C. Previous work has shown that the inhibitory effect of Na ions and the low-affinity stimulation by Na of the rate of ATP:ADP exchange occur at the extracellular surface of the Na pump. The absence of both of these effects at 0 degrees C, where E1 approximately P is maximal, supports the idea that external Na acts through sites on the E2P form of the phosphoenzyme.
Full Text
The Full Text of this article is available as a PDF (863.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albers R. W., Koval G. J., Siegel Studies on the interaction of ouabain and other cardio-active steroids with sodium-potassium-activated adenosine triphosphatase. Mol Pharmacol. 1968 Jul;4(4):324–336. [PubMed] [Google Scholar]
- Blostein R. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J Biol Chem. 1968 Apr 25;243(8):1957–1965. [PubMed] [Google Scholar]
- Blostein R. Sodium pump-catalyzed sodium-sodium exchange associated with ATP hydrolysis. J Biol Chem. 1983 Jul 10;258(13):7948–7953. [PubMed] [Google Scholar]
- Bond G. H., Hudgins P. M. Dog kidney (Na+,K+)-ATPase is more sensitive to inhibition by vanadate than human red cell (Na+,K+)-ATPase. Biochim Biophys Acta. 1981 Sep 7;646(3):479–482. doi: 10.1016/0005-2736(81)90318-7. [DOI] [PubMed] [Google Scholar]
- Brotherus J. R., Møller J. V., Jørgensen P. L. Soluble and active renal Na, K-ATPase with maximum protein molecular mass 170,000 +/- 9,000 daltons; formation of larger units by secondary aggregation. Biochem Biophys Res Commun. 1981 May 15;100(1):146–154. doi: 10.1016/s0006-291x(81)80075-7. [DOI] [PubMed] [Google Scholar]
- De Weer P. Effects of intracellular adenosine-5'-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J Gen Physiol. 1970 Nov;56(5):583–620. doi: 10.1085/jgp.56.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fahn S., Hurley M. R., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. II. Effects of N-ethylmaleimide and other sulfhydryl reagents. J Biol Chem. 1966 Apr 25;241(8):1890–1895. [PubMed] [Google Scholar]
- Fahn S., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphorylation. J Biol Chem. 1966 Apr 25;241(8):1882–1889. [PubMed] [Google Scholar]
- Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Hoffman J. F., Lew V. L. Some "partial reactions" of the sodium pump. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):91–102. doi: 10.1098/rstb.1971.0080. [DOI] [PubMed] [Google Scholar]
- Glynn I. M., Hoffman J. F. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J Physiol. 1971 Oct;218(1):239–256. doi: 10.1113/jphysiol.1971.sp009612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Karlish S. J. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium. J Physiol. 1976 Apr;256(2):465–496. doi: 10.1113/jphysiol.1976.sp011333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFFMAN J. F. The active transport of sodium by ghosts of human red blood cells. J Gen Physiol. 1962 May;45:837–859. doi: 10.1085/jgp.45.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara Y., Nakao M. Sodium ion discharge from pig kidney Na+, K+-ATPase Na+-dependency of the E1P-E2P equilibrium in the absence of KCl. J Biochem. 1981 Oct;90(4):923–931. doi: 10.1093/oxfordjournals.jbchem.a133580. [DOI] [PubMed] [Google Scholar]
- Kaplan J. H., Hollis R. J. External Na dependence of ouabain-sensitive ATP:ADP exchange initiated by photolysis of intracellular caged-ATP in human red cell ghosts. Nature. 1980 Dec 11;288(5791):587–589. doi: 10.1038/288587a0. [DOI] [PubMed] [Google Scholar]
- Kaplan J. H., Kenney L. J. ADP supports ouabain-sensitive K-K exchange in human red blood cells. Ann N Y Acad Sci. 1982;402:292–295. doi: 10.1111/j.1749-6632.1982.tb25750.x. [DOI] [PubMed] [Google Scholar]
- Kaplan J. H. Sodium ions and the sodium pump: transport and enzymatic activity. Am J Physiol. 1983 Sep;245(3):G327–G333. doi: 10.1152/ajpgi.1983.245.3.G327. [DOI] [PubMed] [Google Scholar]
- Kaplan J. H. Sodium pump-mediated ATP:ADP exchange. The sided effects of sodium and potassium ions. J Gen Physiol. 1982 Dec;80(6):915–937. doi: 10.1085/jgp.80.6.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlish S. J., Yates D. W., Glynn I. M. Conformational transitions between Na+-bound and K+-bound forms of (Na+ + K+)-ATPase, studied with formycin nucleotides. Biochim Biophys Acta. 1978 Jul 7;525(1):252–264. doi: 10.1016/0005-2744(78)90219-x. [DOI] [PubMed] [Google Scholar]
- Kuriki Y., Racker E. Inhibition of (Na+, K+)adenosine triphosphatase and its partial reactions by quercetin. Biochemistry. 1976 Nov 16;15(23):4951–4956. doi: 10.1021/bi00668a001. [DOI] [PubMed] [Google Scholar]
- Nørby J. G., Klodos I., Christiansen N. O. Kinetics of Na-ATPase activity by the Na,K pump. Interactions of the phosphorylated intermediates with Na+, Tris+, and K+. J Gen Physiol. 1983 Dec;82(6):725–759. doi: 10.1085/jgp.82.6.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plesner I. W., Plesner L., Nørby J. G., Klodos I. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model. Biochim Biophys Acta. 1981 May 6;643(2):483–494. doi: 10.1016/0005-2736(81)90090-0. [DOI] [PubMed] [Google Scholar]
- Post R. L., Toda G., Rogers F. N. Phosphorylation by inorganic phosphate of sodium plus potassium ion transport adenosine triphosphatase. Four reactive states. J Biol Chem. 1975 Jan 25;250(2):691–701. [PubMed] [Google Scholar]
- Schwoch G., Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973 Dec 15;2(2):197–218. doi: 10.1007/BF01795474. [DOI] [PubMed] [Google Scholar]
- Skou J. C. The (Na++K+) activated enzyme system and its relationship to transport of sodium and potassium. Q Rev Biophys. 1974 Jul;7(3):401–434. doi: 10.1017/s0033583500001475. [DOI] [PubMed] [Google Scholar]
- Taniguchi K., Post R. L. Synthesis of adenosine triphosphate and exchange between inorganic phosphate and adenosine triphosphate in sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1975 Apr 25;250(8):3010–3018. [PubMed] [Google Scholar]
- White B., Blostein R. Comparison of red cell and kidney (Na+ +K+)-ATPase at 0 degrees C. Biochim Biophys Acta. 1982 Jun 28;688(3):685–690. doi: 10.1016/0005-2736(82)90280-2. [DOI] [PubMed] [Google Scholar]
- Yoda A., Yoda S. Formation of ADP-sensitive phosphorylated intermediate in the electric eel Na, K-ATPase preparation. Mol Pharmacol. 1982 Nov;22(3):693–699. [PubMed] [Google Scholar]
