Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1985 May 1;85(5):699–728. doi: 10.1085/jgp.85.5.699

Electro-osmosis and the reabsorption of fluid in renal proximal tubules

PMCID: PMC2215821  PMID: 3998707

Abstract

The lateral intercellular spaces (LIS) are believed to be the final common pathway for fluid reabsorption from the renal proximal tubule. We postulate that electrogenic sodium pumps in the lateral membranes produce an electrical potential within the LIS, that the lateral membranes bear a net negative charge, and that fluid moves parallel to these membranes because of Helmholtz-type electro-osmosis, the field- induced movement of fluid adjacent to a charged surface. Our theoretical analysis indicates that the sodium pumps produce a longitudinal electric field of the order of 1 V/cm in the LIS. Our experimental measurements demonstrate that the electrophoretic mobility of rat renal basolateral membrane vesicles is 1 micron/s per V/cm, which is also the electro-osmotic fluid velocity in the LIS produced by a unit electric field. Thus, the fluid velocity in the LIS due to electro-osmosis should be of the order of 1 micron/s, which is sufficient to account for the observed reabsorption of fluid from renal proximal tubules. Several experimentally testable predictions emerge from our model. First, the pressure in the LIS need not increase when fluid is transported. Thus, the LIS of mammalian proximal tubules need not swell during fluid transport, a prediction consistent with the observations of Burg and Grantham (1971, Membranes and Ion Transport, pp. 49-77). Second, the reabsorption of fluid is predicted to cease when the lumen is clamped to a negative voltage. Our analysis predicts that a voltage of -15 mV will cause fluid to be secreted into the Necturus proximal tubule, a prediction consistent with the observations of Spring and Paganelli (1972, J. Gen. Physiol., 60:181).

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Brodwick M., Latorre R., McLaughlin A., McLaughlin S., Szabo G. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. Biophys J. 1983 Dec;44(3):333–342. doi: 10.1016/S0006-3495(83)84307-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BANGHAM A. D., PETHICA B. A., SEAMAN G. V. The charged groups at the interface of some blood cells. Biochem J. 1958 May;69(1):12–19. doi: 10.1042/bj0690012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balasubramanian A., McLaughlin S. Electro-osmosis at the surface of phospholipid bilayer membranes. Biochim Biophys Acta. 1982 Feb 8;685(1):1–5. doi: 10.1016/0005-2736(82)90026-8. [DOI] [PubMed] [Google Scholar]
  4. Carpi-Medina P., González E., Whittembury G. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am J Physiol. 1983 May;244(5):F554–F563. doi: 10.1152/ajprenal.1983.244.5.F554. [DOI] [PubMed] [Google Scholar]
  5. DiBona D. R., Mills J. W. Distribution of Na+-pump sites in transporting epithelia. Fed Proc. 1979 Feb;38(2):134–143. [PubMed] [Google Scholar]
  6. Diamond J. M. Osmotic water flow in leaky epithelia. J Membr Biol. 1979 Dec 31;51(3-4):195–216. doi: 10.1007/BF01869084. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 1979 Nov 13;18(23):5213–5223. doi: 10.1021/bi00590a028. [DOI] [PubMed] [Google Scholar]
  8. Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill A. E. Solute-solvent coupling in epithelia: an electro-osmotic theory of fluid transfer. Proc R Soc Lond B Biol Sci. 1975 Jun 20;190(1098):115–134. doi: 10.1098/rspb.1975.0082. [DOI] [PubMed] [Google Scholar]
  11. Hill A. Salt-water coupling in leaky epithelia. J Membr Biol. 1980 Oct 31;56(3):177–182. doi: 10.1007/BF01869474. [DOI] [PubMed] [Google Scholar]
  12. Huss R. E., Marsh D. J. A model of NaCl and water flow through paracellular pathways of renal proximal tubules. J Membr Biol. 1975;23(3-4):305–347. doi: 10.1007/BF01870256. [DOI] [PubMed] [Google Scholar]
  13. Jacobs A., White G. P., Tait G. P. Iron chelation in cell cultures by two conjugates of 2,3-dihydroxybenzoic acid (2,3 -DHB). Biochem Biophys Res Commun. 1977 Feb 21;74(4):1626–1630. doi: 10.1016/0006-291x(77)90629-5. [DOI] [PubMed] [Google Scholar]
  14. Keljo D. J., Kleinzeller A., Murer H., Kinne R. Is hexokinase present in the basal lateral membranes of rat kidney proximal tubular epithelial cells? Biochim Biophys Acta. 1978 Apr 20;508(3):500–512. doi: 10.1016/0005-2736(78)90095-0. [DOI] [PubMed] [Google Scholar]
  15. Kinne R., Schwartz I. L. Isolated membrane vesicles in the evaluation of the nature, localization, and regulation of renal transport processes. Kidney Int. 1978 Dec;14(6):547–556. doi: 10.1038/ki.1978.163. [DOI] [PubMed] [Google Scholar]
  16. Kyte J. Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J Cell Biol. 1976 Feb;68(2):304–318. doi: 10.1083/jcb.68.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levine S., Levine M., Sharp K. A., Brooks D. E. Theory of the electrokinetic behavior of human erythrocytes. Biophys J. 1983 May;42(2):127–135. doi: 10.1016/S0006-3495(83)84378-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mathias R. T. Effect of tortuous extracellular pathways on resistance measurements. Biophys J. 1983 Apr;42(1):55–59. doi: 10.1016/S0006-3495(83)84368-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maunsbach A. B., Boulpaep E. L. Paracellular shunt ultrastructure and changes in fluid transport in Necturus proximal tubule. Kidney Int. 1983 Nov;24(5):610–619. doi: 10.1038/ki.1983.201. [DOI] [PubMed] [Google Scholar]
  20. McDaniel R. V., McLaughlin A., Winiski A. P., Eisenberg M., McLaughlin S. Bilayer membranes containing the ganglioside GM1: models for electrostatic potentials adjacent to biological membranes. Biochemistry. 1984 Sep 25;23(20):4618–4624. doi: 10.1021/bi00315a016. [DOI] [PubMed] [Google Scholar]
  21. Ninham B. W., Parsegian V. A. Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J Theor Biol. 1971 Jun;31(3):405–428. doi: 10.1016/0022-5193(71)90019-1. [DOI] [PubMed] [Google Scholar]
  22. Os C. H., Michels J. A., Slegers J. F. Effects of electrical gradients on volume flows across gall bladder epithelium. Biochim Biophys Acta. 1976 Sep 7;443(3):545–555. doi: 10.1016/0005-2736(76)90472-7. [DOI] [PubMed] [Google Scholar]
  23. Parsegian V. A., Gingell D. On the electrostatic interaction across a salt solution between two bodies bearing unequal charges. Biophys J. 1972 Sep;12(9):1192–1204. doi: 10.1016/S0006-3495(72)86155-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rae J. L. Potential profiles in the crystalline lens of the frog. Exp Eye Res. 1974 Sep;19(3):227–234. doi: 10.1016/0014-4835(74)90141-9. [DOI] [PubMed] [Google Scholar]
  25. Sackin H., Boulpaep E. L. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney. J Gen Physiol. 1975 Dec;66(6):671–733. doi: 10.1085/jgp.66.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schafer J. A., Troutman S. L., Watkins M. L., Andreoli T. E. Flow dependence of fluid transport in the isolated superficial pars recta: evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption. Kidney Int. 1981 Nov;20(5):588–597. doi: 10.1038/ki.1981.181. [DOI] [PubMed] [Google Scholar]
  27. Segel L. A. Standing-gradient flows driven by active solute transport. J Theor Biol. 1970 Nov;29(2):233–250. doi: 10.1016/0022-5193(70)90020-2. [DOI] [PubMed] [Google Scholar]
  28. Spring K. R. A parallel path model for Necturus proximal tubule. J Membr Biol. 1973 Nov 8;13(4):323–352. doi: 10.1007/BF01868235. [DOI] [PubMed] [Google Scholar]
  29. Spring K. R. Current-induced voltage transients in Necturus proximal tubule. J Membr Biol. 1973 Nov 8;13(4):299–322. doi: 10.1007/BF01868234. [DOI] [PubMed] [Google Scholar]
  30. Spring K. R., Ericson A. C. Epithelial cell volume modulation and regulation. J Membr Biol. 1982;69(3):167–176. doi: 10.1007/BF01870396. [DOI] [PubMed] [Google Scholar]
  31. Spring K. R. Fluid transport by gallbladder epithelium. J Exp Biol. 1983 Sep;106:181–194. doi: 10.1242/jeb.106.1.181. [DOI] [PubMed] [Google Scholar]
  32. Spring K. R., Hope A. Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J Gen Physiol. 1979 Mar;73(3):287–305. doi: 10.1085/jgp.73.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spring K. R., Paganelli C. V. Sodium flux in Necturus proximal tubule under voltage clamp. J Gen Physiol. 1972 Aug;60(2):181–201. doi: 10.1085/jgp.60.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tisher C. C., Kokko J. P. Relationship between peritubular oncotic pressure gradients and morphology in isolated proximal tubules. Kidney Int. 1974 Sep;6(3):146–156. doi: 10.1038/ki.1974.93. [DOI] [PubMed] [Google Scholar]
  35. Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weinstein A. M., Stephenson J. L. Coupled water transport in standing gradient models of the lateral intercellular space. Biophys J. 1981 Jul;35(1):167–191. doi: 10.1016/S0006-3495(81)84781-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weinstein A. M., Stephenson J. L. Electrolyte transport across a simple epithelium. Steady-state and transient analysis. Biophys J. 1979 Aug;27(2):165–186. doi: 10.1016/S0006-3495(79)85209-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Welling L. W., Grantham J. J. Physical properties of isolated perfused renal tubules and tubular basement membranes. J Clin Invest. 1972 May;51(5):1063–1075. doi: 10.1172/JCI106898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Welling L. W., Welling D. J. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int. 1976 May;9(5):385–394. doi: 10.1038/ki.1976.48. [DOI] [PubMed] [Google Scholar]
  40. Welling L. W., Welling D. J. Surface areas of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int. 1975 Dec;8(6):343–348. doi: 10.1038/ki.1975.125. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES