Abstract
Recovery from destruction by sodium deoxycholate (DOC) was studied with the receptor membrane of the blowfly, Phormia regina. The recovery can be divided into two processes, colchicine dependent and colchicine independent. The colchicine-dependent process was completely depressed by pretreatment with colchicine at 5 mM for 2 min (partially at 0.1 mM for 10 min), but the colchicine-independent one persisted. Vinblastine also caused depression but lumicolchicine did not. Records of responses obtained from the DOC-treated sugar receptor showed long response latencies that gradually became indistinct with recovery. Colchicine also affected this change in response latency after the DOC treatment. These results suggest that the colchicine-dependent recovery process is related to microtubules in the distal process of the receptor cell. The recovery time course and the change in response latency could be quantitatively explained by the simple assumptions that DOC underwent desorption from the receptor membrane (colchicine-independent recovery process) and that regeneration of the disrupted distal process of the receptor cell accompanied recovery in the number of available receptor sites (colchicine-dependent recovery process).
Full Text
The Full Text of this article is available as a PDF (784.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEIDLER L. M. A theory of taste stimulation. J Gen Physiol. 1954 Nov 20;38(2):133–139. doi: 10.1085/jgp.38.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correia J. J., Williams R. C., Jr Mechanisms of assembly and disassembly of microtubules. Annu Rev Biophys Bioeng. 1983;12:211–235. doi: 10.1146/annurev.bb.12.060183.001235. [DOI] [PubMed] [Google Scholar]
- Getchell T. V., Heck G. L., DeSimone J. A., Price S. The location of olfactory receptor sites. Inferences from latency measurements. Biophys J. 1980 Mar;29(3):397–411. doi: 10.1016/S0006-3495(80)85142-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGSON E. S., LETTVIN J. Y., ROEDER K. D. Physiology of a primary chemoreceptor unit. Science. 1955 Sep 2;122(3166):417–418. doi: 10.1126/science.122.3166.417-a. [DOI] [PubMed] [Google Scholar]
- MORITA H. Initiation of spike potentials in contact chemosensory hairs of insects. III. D.C. stimulation and generator potential of labellar chemoreceptor of calliphora. J Cell Comp Physiol. 1959 Oct;54:189–204. doi: 10.1002/jcp.1030540209. [DOI] [PubMed] [Google Scholar]
- Matsumoto G., Sakai H. Microtubules inside the plasma membrane of squid giant axons and their possible physiological function. J Membr Biol. 1979 Oct 5;50(1):1–14. doi: 10.1007/BF01868784. [DOI] [PubMed] [Google Scholar]
- Matsumoto G., Sakai H. Restoration of membrane excitability of squid giant axons by reagents activating tyrosine-tubulin ligase. J Membr Biol. 1979 Oct 5;50(1):15–22. doi: 10.1007/BF01868785. [DOI] [PubMed] [Google Scholar]
- Mizel S. B., Wilson L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry. 1972 Jul 4;11(14):2573–2578. doi: 10.1021/bi00764a003. [DOI] [PubMed] [Google Scholar]
- Morita H., Shiraishi A. Stimulation of the labellar sugar receptor of the fleshfly by mono- and disaccharides. J Gen Physiol. 1968 Oct;52(4):559–583. doi: 10.1085/jgp.52.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
- Price M. T. The effects of colchicine and lumicolchicine on the rapid phase of axonal transport in the rabbit visual system. Brain Res. 1974 Sep 13;77(3):497–501. doi: 10.1016/0006-8993(74)90638-6. [DOI] [PubMed] [Google Scholar]
- Shimada I. Chemical treatments of the labellar sugar receptor of the fleshfly. J Insect Physiol. 1975 Sep;21(9):1565–1574. doi: 10.1016/0022-1910(75)90193-6. [DOI] [PubMed] [Google Scholar]
- Shimada I., Shiraishi A., Kijima H., Morita H. Separation of two receptor sites in a single labellar sugar receptor of the flesh-fly by treatment with p-chloromercuribenzoate. J Insect Physiol. 1974 Mar;20(3):605–621. doi: 10.1016/0022-1910(74)90166-8. [DOI] [PubMed] [Google Scholar]
- Snyder J. A., McIntosh J. R. Biochemistry and physiology of microtubules. Annu Rev Biochem. 1976;45:699–720. doi: 10.1146/annurev.bi.45.070176.003411. [DOI] [PubMed] [Google Scholar]
- TATEDA H., MORITA H. Initiation of spike potentials in contact chemosensory hairs of insects. I. The generation site of the recorded spike potentials. J Cell Comp Physiol. 1959 Oct;54:171–176. doi: 10.1002/jcp.1030540207. [DOI] [PubMed] [Google Scholar]
- Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]
- Wilson L., Friedkin M. The biochemical events of mitosis. I. Synthesis and properties of colchicine labeled with tritium in its acetyl moiety. Biochemistry. 1966 Jul;5(7):2463–2468. doi: 10.1021/bi00871a042. [DOI] [PubMed] [Google Scholar]
- Yahara I., Edelman G. M. Modulation of lymphocyte receptor mobility by concanavalin A and colchicine. Ann N Y Acad Sci. 1975 Jun 30;253:455–469. doi: 10.1111/j.1749-6632.1975.tb19221.x. [DOI] [PubMed] [Google Scholar]
