Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1986 Apr 1;87(4):633–647. doi: 10.1085/jgp.87.4.633

Decline of electrogenic Na+/K+ pump activity in rod photoreceptors during maintained illumination

PMCID: PMC2215872  PMID: 2422316

Abstract

Light-evoked changes in membrane voltage were recorded intracellularly from rod photoreceptors in the isolated retina preparation of the toad, Bufo marinus, during superfusion with a solution containing pharmacological agents that blocked voltage-dependent conductances. Under these conditions, the amplitude of the hyperpolarizing photoresponse became much greater than under control conditions. The results of several experiments support the conclusion that this increase in photoresponse amplitude was due primarily to a voltage that was produced when the electrogenic current from the rods' Na+/K+ pump flowed across an increased membrane resistance (Torre, V. 1982. Journal of Physiology. 333:315). At the onset of a period of continuous illumination, the rod membrane first hyperpolarized and then began to repolarize, and after 180 s of illumination, the membrane voltage had recovered by 60-72% of its initial hyperpolarization. There did not appear to be any significant decrease in rod membrane resistance associated with this repolarization. Both the enhanced hyperpolarization at light onset and the slow repolarization during maintained illumination were blocked by superfusion with 10.0 microM strophanthidin. These data support the hypothesis that the activity of the rods' Na+/K+ pump declines progressively during maintained illumination. It is likely that the decline in pump activity produces significant changes in [K+]o in the subretinal space during maintained illumination.

Full Text

The Full Text of this article is available as a PDF (953.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader C. R., Bertrand D. Effect of changes in intra- and extracellular sodium on the inward (anomalous) rectification in salamander photoreceptors. J Physiol. 1984 Feb;347:611–631. doi: 10.1113/jphysiol.1984.sp015086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bader C. R., Bertrand D., Schwartz E. A. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol. 1982 Oct;331:253–284. doi: 10.1113/jphysiol.1982.sp014372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bader C. R., Macleish P. R., Schwartz E. A. A voltage-clamp study of the light response in solitary rods of the tiger salamander. J Physiol. 1979 Nov;296:1–26. doi: 10.1113/jphysiol.1979.sp012988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fain G. L., Gerschenfeld H. M., Quandt F. N. Calcium spikes in toad rods. J Physiol. 1980 Jun;303:495–513. doi: 10.1113/jphysiol.1980.sp013300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fain G. L., Lisman J. E. Membrane conductances of photoreceptors. Prog Biophys Mol Biol. 1981;37(2):91–147. doi: 10.1016/0079-6107(82)90021-9. [DOI] [PubMed] [Google Scholar]
  6. Fain G. L., Quandt F. N., Bastian B. L., Gerschenfeld H. M. Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature. 1978 Mar 30;272(5652):466–469. doi: 10.1038/272467a0. [DOI] [PubMed] [Google Scholar]
  7. Fain G. L., Quandt F. N. The effects of tetraethylammonium and cobalt ions on responses to extrinsic current in toad rods. J Physiol. 1980 Jun;303:515–533. doi: 10.1113/jphysiol.1980.sp013301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fain G. L. Sensitivity of toad rods: Dependence on wave-length and background illumination. J Physiol. 1976 Sep;261(1):71–101. doi: 10.1113/jphysiol.1976.sp011549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagins W. A. The visual process: Excitatory mechanisms in the primary receptor cells. Annu Rev Biophys Bioeng. 1972;1:131–158. doi: 10.1146/annurev.bb.01.060172.001023. [DOI] [PubMed] [Google Scholar]
  10. Hodgkin A. L., McNaughton P. A., Nunn B. J., Yau K. W. Effect of ions on retinal rods from Bufo marinus. J Physiol. 1984 May;350:649–680. doi: 10.1113/jphysiol.1984.sp015223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kimble E. A., Svoboda R. A., Ostroy S. E. Oxygen consumption and ATP changes of the vertebrate photoreceptor. Exp Eye Res. 1980 Sep;31(3):271–288. doi: 10.1016/s0014-4835(80)80037-6. [DOI] [PubMed] [Google Scholar]
  12. Lamb T. D., Simon E. J. The relation between intercellular coupling and electrical noise in turtle photoreceptors. J Physiol. 1976 Dec;263(2):257–286. doi: 10.1113/jphysiol.1976.sp011631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacLeish P. R., Schwartz E. A., Tachibana M. Control of the generator current in solitary rods of the Ambystoma tigrinum retina. J Physiol. 1984 Mar;348:645–664. doi: 10.1113/jphysiol.1984.sp015131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marroni P., Alpigiani V., Cervetto L., Torre V. Mechanism of action of the sodium pump in vertebrate photoreceptors. Rev Can Biol Exp. 1983 Nov;42(3):257–261. [PubMed] [Google Scholar]
  15. Matsuura T., Miller W. H., Tomita T. Cone-specific c-wave in the turtle retina. Vision Res. 1978;18(7):767–775. doi: 10.1016/0042-6989(78)90115-3. [DOI] [PubMed] [Google Scholar]
  16. Oakley B., 2nd Effects of low [Ca2+]0 upon [K+]0 during and after maintained illumination of the isolated retina of the toad. Vision Res. 1984;24(8):815–819. doi: 10.1016/0042-6989(84)90152-4. [DOI] [PubMed] [Google Scholar]
  17. Oakley B., 2nd Effects of maintained illumination upon [K+]0 in the subretinal space of the isolated retina of the toad. Vision Res. 1983;23(11):1325–1337. doi: 10.1016/0042-6989(83)90108-6. [DOI] [PubMed] [Google Scholar]
  18. Oakley B., 2nd, Flaming D. G., Brown K. T. Effects of the rod receptor potential upon retinal extracellular potassium concentration. J Gen Physiol. 1979 Dec;74(6):713–737. doi: 10.1085/jgp.74.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  20. Oakley B., 2nd, Steinberg R. H. Effects of maintained illumination upon [K+]0 in the subretinal space of the frog retina. Vision Res. 1982;22(7):767–773. doi: 10.1016/0042-6989(82)90007-4. [DOI] [PubMed] [Google Scholar]
  21. Shimazaki H., Oakley B., 2nd Reaccumulation of [K+]o in the toad retina during maintained illumination. J Gen Physiol. 1984 Sep;84(3):475–504. doi: 10.1085/jgp.84.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
  23. Tomita T. Electrophysiological studies of retinal cell function. Invest Ophthalmol. 1976 Mar;15(3):171–187. [PubMed] [Google Scholar]
  24. Torre V., Owen W. G. High-pass filtering of small signals by the rod network in the retina of the toad, Bufo marinus. Biophys J. 1983 Mar;41(3):305–324. doi: 10.1016/S0006-3495(83)84443-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Torre V. The contribution of the electrogenic sodium-potassium pump to the electrical activity of toad rods. J Physiol. 1982 Dec;333:315–341. doi: 10.1113/jphysiol.1982.sp014456. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES