Abstract
Exposure of ARL 15 cells, an established line from adult rat liver, to concentrations of external K+ below 1 mM caused a rapid fall in intracellular K+ and a corresponding rise in intracellular Na+ that became maximal within 12 h. Upon continued exposure to low external K+, these initial changes were followed by a striking recovery such that, by 24 h, intracellular Na+ and K+ concentrations approached their control values. Concomitant with this recovery, there was a substantial increase in Na,K-ATPase specific activity that was detectable at 12 h and maximal at 24 h. After restoration of the external K+ concentration, the elevated level of enzyme activity showed little change for at least 24 h. In contrast, restoration of external K+ resulted in a rapid rise in intracellular K+ and a fall in Na+ such that within 30 min the Na+/K+ ratio was lower than in control cells. This overshoot, together with a demonstrated increase in active 86Rb+ uptake under "Vmax" conditions, confirms that the enhancement in Na,K- ATPase specific activity in response to low external K+ represents an increase in functional Na,K pumping capacity.
Full Text
The Full Text of this article is available as a PDF (957.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boardman L., Huett M., Lamb J. F., Newton J. P., Polson J. M. Evidence for the genetic control of the sodium pump density in HeLa cells. J Physiol. 1974 Sep;241(3):771–794. doi: 10.1113/jphysiol.1974.sp010684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
- Graves J. S., Wheeler D. D. Increase in K+ and alpha-AIB active transport in CHO cells after low [K+] treatment. Am J Physiol. 1982 Sep;243(3):C124–C132. doi: 10.1152/ajpcell.1982.243.3.C124. [DOI] [PubMed] [Google Scholar]
- Haber R. S., Loeb J. N. The concentration dependence of active K+ transport in the turkey erythrocyte. Hill analysis and evidence for positive cooperativity between ion binding sites. J Gen Physiol. 1983 Jan;81(1):1–28. doi: 10.1085/jgp.81.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim D., Marsh J. D., Barry W. H., Smith T. W. Effects of growth in low potassium medium or ouabain on membrane Na,K-ATPase, cation transport, and contractility in cultured chick heart cells. Circ Res. 1984 Jul;55(1):39–48. doi: 10.1161/01.res.55.1.39. [DOI] [PubMed] [Google Scholar]
- Koch K. S., Leffert H. L. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 1979 Sep;18(1):153–163. doi: 10.1016/0092-8674(79)90364-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lo C. S., Edelman I. S. Effect of triiodothyronine on the synthesis and degradation of renal cortical (Na+ + k+)-adenosine triphosphatase. J Biol Chem. 1976 Dec 25;251(24):7834–7840. [PubMed] [Google Scholar]
- Lo C. S., Lo T. N. Effect of triiodothyronine on the synthesis and degradation of the small subunit of renal cortical (Na+ + K+)-adenosine triphosphatase. J Biol Chem. 1980 Mar 10;255(5):2131–2136. [PubMed] [Google Scholar]
- MASTER R. W. POSSIBLE SYNTHESIS OF POLYRIBONUCLEOTIDES OF KNOWN BASE-TRIPLET SEQUENCES. Nature. 1965 Apr 3;206:93–93. doi: 10.1038/206093b0. [DOI] [PubMed] [Google Scholar]
- McRoberts J. A., Tran C. T., Saier M. H., Jr Characterization of low potassium-resistant mutants of the Madin-Darby canine kidney cell line with defects in NaCl/KCl symport. J Biol Chem. 1983 Oct 25;258(20):12320–12326. [PubMed] [Google Scholar]
- Muallem S., Karlish S. J. Regulatory interaction between calmodulin and ATP on the red cell Ca2+ pump. Biochim Biophys Acta. 1980 Apr 24;597(3):631–636. doi: 10.1016/0005-2736(80)90235-7. [DOI] [PubMed] [Google Scholar]
- Philipson K. D., Edelman I. S. Characteristics of thyroid-stimulated Na+-K+-ATPase of rat heart. Am J Physiol. 1977 May;232(5):C202–C206. doi: 10.1152/ajpcell.1977.232.5.C202. [DOI] [PubMed] [Google Scholar]
- Pollack M., Fisher H. W. Dissociation of ribonucleic acid and protein synthesis in mammalian cells deprived of potassium. Arch Biochem Biophys. 1976 Jan;172(1):189–190. doi: 10.1016/0003-9861(76)90065-5. [DOI] [PubMed] [Google Scholar]
- Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- San R. H., Shimada T., Maslansky C. J., Kreiser D. M., Laspia M. F., Rice J. M., Williams G. M. Growth characteristics and enzyme activities in a survey of transformation markers in adult rat liver epithelial-like cell cultures. Cancer Res. 1979 Nov;39(11):4441–4448. [PubMed] [Google Scholar]
- Smith J. B., Rozengurt E. Serum stimulates the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5560–5564. doi: 10.1073/pnas.75.11.5560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soltoff S. P., Mandel L. J. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump. J Gen Physiol. 1984 Oct;84(4):623–642. doi: 10.1085/jgp.84.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vara F., Schneider J. A., Rozengurt E. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2384–2388. doi: 10.1073/pnas.82.8.2384. [DOI] [PMC free article] [PubMed] [Google Scholar]