Abstract
Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane K+-conductive pathway by Ba++ to provide estimates of the magnitudes of the transcellular (Gc) and paracellular (Gs) electrical conductances (millisiemens per square centimeter). These studies also evaluated the effects of luminal hypertonicity produced by urea on the paracellular electrical conductance, the electrical Na+/Cl- permselectivity ratio, and the morphology of in vitro mTALH segments exposed to peritubular antidiuretic hormone (ADH). Increasing luminal Ba++ concentrations, in the absence of luminal K+, produced a progressive reduction in the transcellular conductance that was maximal at 20 mM Ba++. The Ba++- sensitive transcellular conductance in the presence of ADH was 61.8 +/- 1.7 mS/cm2, or approximately 65% of the total transepithelial conductance. In phenomenological terms, the luminal Ba++-dependent blockade of the transcellular conductance exhibited negative cooperativity. The transepithelial osmotic gradient produced by luminal urea produced blebs on apical surfaces, a striking increase in shunt conductance, and a decrease in the shunt Na+/Cl- permselectivity (PNa/PCl), which approached that of free solution. The transepithelial conductance obtained with luminal 800 mM urea, 20 mM Ba++, and 0 K+ was 950 +/- 150 mS/cm2 and provided an estimate of the maximal diffusion resistance of intercellular spaces, exclusive of junctional complexes. The calculated range for junctional dilution voltages owing to interspace salt accumulation during ADH-dependent net NaCl absorption was 0.7-1.1 mV. Since the Ve accompanying ADH-dependent net NaCl absorption is 10 mV, lumen positive, virtually all of the spontaneous transepithelial voltage in the mouse mTALH is due to transcellular transport processes. Finally, we developed a series of expressions in which the ratio of net Cl- absorption to paracellular Na+ absorption could be expressed in terms of a series of electrical variables. Specifically, an analysis of paired measurement of PNa/PCl and Gs was in agreement with an electroneutral Na+:K+:2 Cl- apical entry step. Thus, for net NaCl absorption, approximately 50% of Na+ was absorbed via a paracellular route.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bindslev N., Tormey J. M., Wright E. M. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium. J Membr Biol. 1974;19(4):357–380. doi: 10.1007/BF01869986. [DOI] [PubMed] [Google Scholar]
- Burg M. B., Issaacson L., Grantham J., Orloff J. Electrical properties of isolated perfused rabbit renal tubules. Am J Physiol. 1968 Oct;215(4):788–794. doi: 10.1152/ajplegacy.1968.215.4.788. [DOI] [PubMed] [Google Scholar]
- Burg M. B. Thick ascending limb of Henle's loop. Kidney Int. 1982 Nov;22(5):454–464. doi: 10.1038/ki.1982.198. [DOI] [PubMed] [Google Scholar]
- DiBona D. R., Civan M. M. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways. J Membr Biol. 1973;12(2):101–128. doi: 10.1007/BF01869994. [DOI] [PubMed] [Google Scholar]
- DiBona D. R. Direct visualization of epithelial morphology in the living amphibian urinary bladder. J Membr Biol. 1978;40(Spec No):45–70. doi: 10.1007/BF02025998. [DOI] [PubMed] [Google Scholar]
- Erlij D., Martínez-Palomo A. Opening of tight junctions in frog skin by hypertonic urea solutions. J Membr Biol. 1972;9(3):229–240. [PubMed] [Google Scholar]
- Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
- Greger R., Schlatter E. Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop. Klin Wochenschr. 1983 Oct 17;61(20):1019–1027. doi: 10.1007/BF01537500. [DOI] [PubMed] [Google Scholar]
- Greger R., Schlatter E. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1983 Mar;396(4):315–324. doi: 10.1007/BF01063937. [DOI] [PubMed] [Google Scholar]
- Halm D. R., Krasny E. J., Jr, Frizzell R. A. Electrophysiology of flounder intestinal mucosa. I. Conductance properties of the cellular and paracellular pathways. J Gen Physiol. 1985 Jun;85(6):843–864. doi: 10.1085/jgp.85.6.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hebert S. C., Andreoli T. E. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. determinants of the ADH-mediated increases in transepithelial voltage and in net Cl-absorption. J Membr Biol. 1984;80(3):221–233. doi: 10.1007/BF01868440. [DOI] [PubMed] [Google Scholar]
- Hebert S. C., Culpepper R. M., Andreoli T. E. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol. 1981 Oct;241(4):F412–F431. doi: 10.1152/ajprenal.1981.241.4.F412. [DOI] [PubMed] [Google Scholar]
- Hebert S. C., Culpepper R. M., Andreoli T. E. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage. Am J Physiol. 1981 Oct;241(4):F432–F442. doi: 10.1152/ajprenal.1981.241.4.F432. [DOI] [PubMed] [Google Scholar]
- Hebert S. C., Culpepper R. M., Andreoli T. E. NaCl transport in mouse medullary thick ascending limbs. III. Modulation of the ADH effect by peritubular osmolality. Am J Physiol. 1981 Oct;241(4):F443–F451. doi: 10.1152/ajprenal.1981.241.4.F443. [DOI] [PubMed] [Google Scholar]
- Hebert S. C., Friedman P. A., Andreoli T. E. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductance pathways. J Membr Biol. 1984;80(3):201–219. doi: 10.1007/BF01868439. [DOI] [PubMed] [Google Scholar]
- Helman S. I. Determination of electrical resistance of the isolated cortical collecting tubule and its possible anatomical location. Yale J Biol Med. 1972 Jun-Aug;45(3-4):339–345. [PMC free article] [PubMed] [Google Scholar]
- Helman S. I., Grantham J. J., Burg M. B. Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am J Physiol. 1971 Jun;220(6):1825–1832. doi: 10.1152/ajplegacy.1971.220.6.1825. [DOI] [PubMed] [Google Scholar]
- Horster M., Gundlach H. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron. J Microsc. 1979 Dec;117(3):375–379. doi: 10.1111/j.1365-2818.1979.tb04694.x. [DOI] [PubMed] [Google Scholar]
- Kidder G. W., 3rd, Rehm W. S. A model for the long time-constant transient voltage response to current in epithelial tissues. Biophys J. 1970 Mar;10(3):215–236. doi: 10.1016/S0006-3495(70)86295-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koeppen B. M., Biagi B. A., Giebisch G. H. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol. 1983 Jan;244(1):F35–F47. doi: 10.1152/ajprenal.1983.244.1.F35. [DOI] [PubMed] [Google Scholar]
- LINDLEY B. D., HOSHIKO T., LEB D. E. EFFECTS OF D2O AND OSMOTIC GRADIENTS ON POTENTIAL AND RESISTANCE OF THE ISOLATED FROG SKIN. J Gen Physiol. 1964 Mar;47:773–793. doi: 10.1085/jgp.47.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madara J. L. Increases in guinea pig small intestinal transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure. J Cell Biol. 1983 Jul;97(1):125–136. doi: 10.1083/jcb.97.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murer H., Greger R. Membrane transport in the proximal tubule and thick ascending limb of Henle's loop: mechanisms and their alterations. Klin Wochenschr. 1982 Sep 15;60(18):1103–1113. doi: 10.1007/BF01715840. [DOI] [PubMed] [Google Scholar]
- O'Neil R. G. Voltage-dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane. J Membr Biol. 1983;74(2):165–173. doi: 10.1007/BF01870505. [DOI] [PubMed] [Google Scholar]
- Oberleithner H., Guggino W., Giebisch G. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am J Physiol. 1982 Apr;242(4):F331–F339. doi: 10.1152/ajprenal.1982.242.4.F331. [DOI] [PubMed] [Google Scholar]
- Oberleithner H., Guggino W., Giebisch G. The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation. Pflugers Arch. 1983 Jan;396(1):27–33. doi: 10.1007/BF00584694. [DOI] [PubMed] [Google Scholar]
- Schafer J. A., Troutman S. L., Andreoli T. E. Osmosis in cortical collecting tubules. ADH-independent osmotic flow rectification. J Gen Physiol. 1974 Aug;64(2):228–240. [PMC free article] [PubMed] [Google Scholar]
- USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
- Ussing H. H. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution. Ann N Y Acad Sci. 1966 Jul 14;137(2):543–555. doi: 10.1111/j.1749-6632.1966.tb50180.x. [DOI] [PubMed] [Google Scholar]
- de Bermudez L., Windhager E. E. Osmotically induced changes in electrical resistance of distal tubules of rat kidney. Am J Physiol. 1975 Dec;229(6):1536–1546. doi: 10.1152/ajplegacy.1975.229.6.1536. [DOI] [PubMed] [Google Scholar]