Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1987 Feb 1;89(2):215–237. doi: 10.1085/jgp.89.2.215

Mechanisms of the Ba2+-induced contraction in smooth muscle cells of the rabbit mesenteric artery

PMCID: PMC2215898  PMID: 3559513

Abstract

The mechanism of the Ba2+-induced contraction was investigated using intact and saponin-treated skinned smooth muscle (skinned muscle) strips of the rabbit mesenteric artery. After depletion of Ca2+ stored in the caffeine-sensitive site, greater than 0.65 mM Ba2+ evoked contraction in muscle strips depolarized with 128 mM K+ in Ca2+-free solution in a dose-dependent fashion, and the ED50 values for Ca2+ and Ba2+ were 0.5 mM and 1.2 mM in intact muscle strips, respectively. Nisoldipine (10 nM) blocked the contraction evoked by high K+ or 10 microM norepinephrine (NE) in the presence of 2.6 mM Ba2+, but did not block the contraction evoked in the presence of 2.6 mM Ca2+. These results may indicate that Ba2+ permeates the voltage-dependent Ca2+ channel. In skinned muscle strips, the ED50 values for Ca2+ and Ba2+ were 0.34 and 90 microM, respectively, as estimated from the pCa- and pBa-tension relationships. Calmodulin enhanced and trifluoperazine inhibited the Ba2+- and Ca2+-induced contractions. After the application of Ba2+ or Ca2+ with ATP gamma S in rigor solution, myosin light chain (MLC) was irreversibly thiophosphorylated, as estimated from the Ba2+- or Ca2+-independent contraction. Furthermore, both divalent cations phosphorylated MLC, as measured using two-dimensional gel electrophoresis, to the extent expected from the amplitudes of the contraction evoked by these cations. Thus, Ba2+ is capable of activating the contractile proteins as Ca2+ does. The amount of Ca2+ or Ba2+ stored in cells was estimated from the caffeine response evoked in Ca2+-free solution in intact and skinned muscle strips. After the application of 0.3 microM Ca2+ or 0.1 mM Ba2+ for 60 s to skinned muscle strips after the depletion of Ca2+ stored in cells, caffeine produced a contraction only upon pretreatment with Ca2+ but not with Ba2+. When Ba2+ was applied successively just after the application of Ca2+, the subsequently evoked caffeine-induced contraction was much smaller than that evoked by pretreatment with Ca2+ alone. The above results indicate that Ba2+ permeates the voltage-dependent Ca2+ channel but may not permeate the receptor-operated Ca2+ channel, it releases Ca2+ from store sites but is not accumulated into the store site, and it directly activates the contractile proteins via formation of a Ba2+- calmodulin complex.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  2. Antonio A., Rocha e Silva M., Yashuda Y. The tachyphylactic effect of barium on intestinal smooth muscle. Arch Int Pharmacodyn Ther. 1973 Aug;204(2):260–267. [PubMed] [Google Scholar]
  3. Benham C. D., Bolton T. B., Lang R. J., Takewaki T. The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ -channels in arterial and intestinal smooth muscle cell membranes. Pflugers Arch. 1985 Feb;403(2):120–127. doi: 10.1007/BF00584088. [DOI] [PubMed] [Google Scholar]
  4. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  5. Bond M., Kitazawa T., Somlyo A. P., Somlyo A. V. Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle. J Physiol. 1984 Oct;355:677–695. doi: 10.1113/jphysiol.1984.sp015445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bülbring E., Tomita T. Effect of calcium, barium and manganese on the action of adrenaline in the smooth muscle of the guinea-pig taenia coli. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1027):121–136. doi: 10.1098/rspb.1969.0015. [DOI] [PubMed] [Google Scholar]
  7. Cassidy P., Hoar P. E., Kerrick W. G. Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATP gamma S. J Biol Chem. 1979 Nov 10;254(21):11148–11153. [PubMed] [Google Scholar]
  8. Casteels R., Kitamura K., Kuriyama H., Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):63–79. doi: 10.1113/jphysiol.1977.sp011990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chao S. H., Suzuki Y., Zysk J. R., Cheung W. Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol Pharmacol. 1984 Jul;26(1):75–82. [PubMed] [Google Scholar]
  10. Driska S. P., Aksoy M. O., Murphy R. A. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol. 1981 May;240(5):C222–C233. doi: 10.1152/ajpcell.1981.240.5.C222. [DOI] [PubMed] [Google Scholar]
  11. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  12. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  13. Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):291–320. doi: 10.1085/jgp.85.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagiwara S., Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125. doi: 10.1146/annurev.ne.04.030181.000441. [DOI] [PubMed] [Google Scholar]
  15. Hagiwara S., Fukuda J., Eaton D. C. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol. 1974 May;63(5):564–578. doi: 10.1085/jgp.63.5.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansen T. R., Dineen D. X., Petrak R. Mechanism of action of barium ion on rat aortic smooth muscle. Am J Physiol. 1984 Mar;246(3 Pt 1):C235–C241. doi: 10.1152/ajpcell.1984.246.3.C235. [DOI] [PubMed] [Google Scholar]
  17. Hartshorne D. J., Mrwa U. Regulation of smooth muscle actomyosin. Blood Vessels. 1982;19(1):1–18. doi: 10.1159/000158369. [DOI] [PubMed] [Google Scholar]
  18. Hashimoto T., Hirata M., Itoh T., Kanmura Y., Kuriyama H. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol. 1986 Jan;370:605–618. doi: 10.1113/jphysiol.1986.sp015953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Inomata H., Kao C. Y. Actions of Ba++ on ionic currents of the guinea-pig taenia coli. J Pharmacol Exp Ther. 1985 Apr;233(1):112–124. [PubMed] [Google Scholar]
  20. Ito Y., Kitamura K., Kuriyama H. Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery. J Physiol. 1979 Sep;294:595–611. doi: 10.1113/jphysiol.1979.sp012948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Itoh T., Kanmura Y., Kuriyama H. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery. J Physiol. 1985 Feb;359:467–484. doi: 10.1113/jphysiol.1985.sp015597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Itoh T., Kanmura Y., Kuriyama H. Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery. J Physiol. 1986 Jul;376:231–252. doi: 10.1113/jphysiol.1986.sp016151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Itoh T., Kanmura Y., Kuriyama H., Suzuki H. Nisoldipine-induced relaxation in intact and skinned smooth muscles of rabbit coronary arteries. Br J Pharmacol. 1984 Sep;83(1):243–258. doi: 10.1111/j.1476-5381.1984.tb10141.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Itoh T., Kuriyama H., Suzuki H. Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery. J Physiol. 1983 Apr;337:609–629. doi: 10.1113/jphysiol.1983.sp014645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kanmura Y., Itoh T., Kuriyama H. Agonist actions of Bay K 8644, a dihydropyridine derivative, on the voltage-dependent calcium influx in smooth muscle cells of the rabbit mesenteric artery. J Pharmacol Exp Ther. 1984 Dec;231(3):717–723. [PubMed] [Google Scholar]
  27. Kanmura Y., Itoh T., Suzuki H., Ito Y., Kuriyama H. Effects of nifedipine on smooth muscle cells of the rabbit mesenteric artery. J Pharmacol Exp Ther. 1983 Jul;226(1):238–248. [PubMed] [Google Scholar]
  28. Kreye V. A., Hofmann F., Mühleisen M. Barium can replace calcium in calmodulin-dependent contractions of skinned renal arteries of the rabbit. Pflugers Arch. 1986 Mar;406(3):308–311. doi: 10.1007/BF00640919. [DOI] [PubMed] [Google Scholar]
  29. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  30. Nasu T., Urakawa N. Effect of cholinergic drugs on calcium movement in guinea pig taenia coli. Jpn J Pharmacol. 1973 Aug;23(4):553–561. doi: 10.1254/jjp.23.553. [DOI] [PubMed] [Google Scholar]
  31. Northover B. J. The effect of drugs on the constriction of isolated depolarized blood vessels in response to calcium or barium. Br J Pharmacol. 1968 Oct;34(2):417–428. doi: 10.1111/j.1476-5381.1968.tb07062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  33. Potreau D., Raymond G. Slow inward barium current and contraction on frog single muscle fibres. J Physiol. 1980 Jun;303:91–109. doi: 10.1113/jphysiol.1980.sp013273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983 Feb 17;301(5901):569–574. doi: 10.1038/301569a0. [DOI] [PubMed] [Google Scholar]
  35. Saeki Y., Kato C., Horikoshi T., Yanagisawa K. Effects of Ba2+ on the mechanical properties of glycerinated heart muscle. Pflugers Arch. 1984 Mar;400(3):235–240. doi: 10.1007/BF00581553. [DOI] [PubMed] [Google Scholar]
  36. Saida K., Van Breemen C. Cyclic AMP modulation of adrenoreceptor-mediated arterial smooth muscle contraction. J Gen Physiol. 1984 Aug;84(2):307–318. doi: 10.1085/jgp.84.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Somlyo A. P., Somlyo A. V., Devine C. E., Peters P. D., Hall T. A. Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J Cell Biol. 1974 Jun;61(3):723–742. doi: 10.1083/jcb.61.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Somlyo A. V., Somlyo A. P. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther. 1968 Jan;159(1):129–145. [PubMed] [Google Scholar]
  39. Somlyo A. V., Somlyo A. P. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science. 1971 Nov 26;174(4012):955–958. doi: 10.1126/science.174.4012.955. [DOI] [PubMed] [Google Scholar]
  40. Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun. 1984 Apr 30;120(2):481–485. doi: 10.1016/0006-291x(84)91279-8. [DOI] [PubMed] [Google Scholar]
  41. Ueno H. Calcium mobilization in enzymically isolated single intact and skinned muscle cells of the porcine coronary artery. J Physiol. 1985 Jun;363:103–117. doi: 10.1113/jphysiol.1985.sp015698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Uvelius B., Sigurdsson S. B., Johansson B. Strontium and barium as Substitutes for calcium on electrical and mechanical activity in rat portal vein. Blood Vessels. 1974;11(5-6):245–259. doi: 10.1159/000158019. [DOI] [PubMed] [Google Scholar]
  43. Walsh M. P., Bridenbaugh R., Kerrick W. G., Hartshorne D. J. Gizzard Ca2+-independent myosin light chain kinase: evidence in favor of the phosphorylation theory. Fed Proc. 1983 Jan;42(1):45–50. [PubMed] [Google Scholar]
  44. Wolff D. J., Huebner J. A., Siegel F. L. Calcium-binding phosphoprotein of pig brain: effects of cations on the calcium binding. J Neurochem. 1972 Dec;19(12):2855–2862. doi: 10.1111/j.1471-4159.1972.tb03823.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES