Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1987 Mar 1;89(3):481–500. doi: 10.1085/jgp.89.3.481

Na+- and cGMP-induced Ca2+ fluxes in frog rod photoreceptors

PMCID: PMC2215900  PMID: 3031199

Abstract

We have examined the Ca2+ content and pathways of Ca2+ transport in frog rod outer segments using the Ca2+-indicating dye arsenazo III. The experiments employed suspensions of outer segments of truncated, but physiologically functional, frog rods (OS-IS), intact isolated outer segments (intact OS), and leaky outer segments (leaky OS with a plasma membrane leaky to small solutes, but with sealed disk membranes). We observed the following. Intact OS or OS-IS isolated and purified in Percoll-Ringer's solution contained an average of 2.2 mM total Ca2+, while leaky OS contained 2.0 mM total Ca2+. This suggests that most of the Ca2+ in OS-IS is contained inside OS disks. Phosphodiesterase inhibitors increased the Ca2+ content to approximately 4.2 mM in intact OS or OS-IS, whereas the Ca2+ content of leaky OS was not altered. Na- Ca exchange was the dominant pathway for Ca2+ efflux in both intact and leaky OS/OS-IS. The rate of Na-Ca exchange in intact OS/OS-IS was half- maximal between 30 and 50 mM Na+; at 50 mM Na+, this amounted to 5.8 X 10(7) Ca2+/OS X s or 0.05 mM total Ca2+/s. This is much larger than the Ca2+ component of the dark current. Other alkali cations could not replace Na+ in Na-Ca exchange in either OS-IS or leaky OS. They inhibited the rate of Na-Ca exchange (K greater than or equal to Rb greater than Cs greater than or equal to Li greater than TMA) and, as the inhibition became greater, a delay developed in the onset of Na-Ca exchange. The inhibition of Na-Ca exchange by alkali cations correlates with the prolonged duration of the photoresponse induced by these cations (Hodgkin, A. L., P. A. McNaughton, and B. J. Nunn. 1985. Journal of Physiology. 358:447-468). In addition to Na-Ca exchange, disk membranes in leaky OS showed a second pathway of Ca2+ transport activated by cyclic GMP (cGMP). The cGMP-activated pathway required the presence of alkali cations and had a maximal rate of 9.7 X 10(6) Ca2+/OS X s. cGMP caused the release of only 30% of the total Ca2+ from leaky OS. The rate of Na-Ca exchange in leaky OS amounted to 1.9 X 10(7) Ca2+/OS X s.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastian B. L., Fain G. L. The effects of low calcium and background light on the sensitivity of toad rods. J Physiol. 1982 Sep;330:307–329. doi: 10.1113/jphysiol.1982.sp014343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor D. A., Nunn B. J., Schnapf J. L. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984 Dec;357:575–607. doi: 10.1113/jphysiol.1984.sp015518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biernbaum M. S., Bownds M. D. Frog rod outer segments with attached inner segment ellipsoids as an in vitro model for photoreceptors on the retina. J Gen Physiol. 1985 Jan;85(1):83–105. doi: 10.1085/jgp.85.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capovilla M., Cervetto L., Torre V. The effect of phosphodiesterase inhibitors on the electrical activity of toad rods. J Physiol. 1983 Oct;343:277–294. doi: 10.1113/jphysiol.1983.sp014892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caretta A. Effect of cGMP and cations on the permeability of cattle retinal disks. Eur J Biochem. 1985 May 2;148(3):599–606. doi: 10.1111/j.1432-1033.1985.tb08882.x. [DOI] [PubMed] [Google Scholar]
  6. Cobbs W. H., Pugh E. N., Jr Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation. Nature. 1985 Feb 14;313(6003):585–587. doi: 10.1038/313585a0. [DOI] [PubMed] [Google Scholar]
  7. Cohen A. I., Hall I. A., Ferrendelli J. A. Calcium and cyclic nucleotide regulation in incubated mouse retinas. J Gen Physiol. 1978 May;71(5):595–612. doi: 10.1085/jgp.71.5.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cote R. H., Biernbaum M. S., Nicol G. D., Bownds M. D. Light-induced decreases in cGMP concentration precede changes in membrane permeability in frog rod photoreceptors. J Biol Chem. 1984 Aug 10;259(15):9635–9641. [PubMed] [Google Scholar]
  9. Fain G. L., Schröder W. H. Calcium content and calcium exchange in dark-adapted toad rods. J Physiol. 1985 Nov;368:641–665. doi: 10.1113/jphysiol.1985.sp015881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fesenko E. E., Kolesnikov S. S., Lyubarsky A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985 Jan 24;313(6000):310–313. doi: 10.1038/313310a0. [DOI] [PubMed] [Google Scholar]
  11. George J. S., Hagins W. A. Control of Ca2+ in rod outer segment disks by light and cyclic GMP. Nature. 1983 May 26;303(5915):344–348. doi: 10.1038/303344a0. [DOI] [PubMed] [Google Scholar]
  12. Gold G. H., Korenbrot J. I. Light-induced calcium release by intact retinal rods. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5557–5561. doi: 10.1073/pnas.77.9.5557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagins W. A., Yoshikami S. Ionic mechanisms in excitation of photoreceptors. Ann N Y Acad Sci. 1975 Dec 30;264:314–325. doi: 10.1111/j.1749-6632.1975.tb31492.x. [DOI] [PubMed] [Google Scholar]
  14. Hodgkin A. L., McNaughton P. A., Nunn B. J. The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. J Physiol. 1985 Jan;358:447–468. doi: 10.1113/jphysiol.1985.sp015561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hodgkin A. L., McNaughton P. A., Nunn B. J., Yau K. W. Effect of ions on retinal rods from Bufo marinus. J Physiol. 1984 May;350:649–680. doi: 10.1113/jphysiol.1984.sp015223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaupp U. B., Schnetkamp P. P. Calcium metabolism in vertebrate photoreceptors. Cell Calcium. 1982 May;3(2):83–112. doi: 10.1016/0143-4160(82)90008-2. [DOI] [PubMed] [Google Scholar]
  17. Koch K. W., Kaupp U. B. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J Biol Chem. 1985 Jun 10;260(11):6788–6800. [PubMed] [Google Scholar]
  18. Liebman P. A., Entine G. Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 1968 Jul;8(7):761–775. doi: 10.1016/0042-6989(68)90128-4. [DOI] [PubMed] [Google Scholar]
  19. Matthews H. R., Torre V., Lamb T. D. Effects on the photoresponse of calcium buffers and cyclic GMP incorporated into the cytoplasm of retinal rods. Nature. 1985 Feb 14;313(6003):582–585. doi: 10.1038/313582a0. [DOI] [PubMed] [Google Scholar]
  20. Nicol G. D., Kaupp U. B., Bownds M. D. Transduction persists in rod photoreceptors after depletion of intracellular calcium. J Gen Physiol. 1987 Feb;89(2):297–319. doi: 10.1085/jgp.89.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pfeiffer D. R., Lardy H. A. Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187. Biochemistry. 1976 Mar 9;15(5):935–943. doi: 10.1021/bi00650a001. [DOI] [PubMed] [Google Scholar]
  22. Puckett K. L., Aronson E. T., Goldin S. M. ATP-dependent calcium uptake activity associated with a disk membrane fraction isolated from bovine retinal rod outer segments. Biochemistry. 1985 Jan 15;24(2):390–400. doi: 10.1021/bi00323a023. [DOI] [PubMed] [Google Scholar]
  23. Scarpa A. Measurements of cation transport with metallochromic indicators. Methods Enzymol. 1979;56:301–338. doi: 10.1016/0076-6879(79)56030-3. [DOI] [PubMed] [Google Scholar]
  24. Schnetkamp P. P. Calcium translocation and storage of isolated intact cattle rod outer segments in darkness. Biochim Biophys Acta. 1979 Jul 5;554(2):441–459. doi: 10.1016/0005-2736(79)90383-3. [DOI] [PubMed] [Google Scholar]
  25. Schnetkamp P. P. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes. Biochim Biophys Acta. 1980 May 8;598(1):66–90. doi: 10.1016/0005-2736(80)90266-7. [DOI] [PubMed] [Google Scholar]
  26. Schnetkamp P. P., Kaupp U. B. Calcium-hydrogen exchange in isolated bovine rod outer segments. Biochemistry. 1985 Jan 29;24(3):723–727. doi: 10.1021/bi00324a028. [DOI] [PubMed] [Google Scholar]
  27. Schnetkamp P. P. Metabolism in the cytosol of intact isolated cattle rod outer segments as indicator for cytosolic calcium and magnesium ions. Biochemistry. 1981 Apr 28;20(9):2449–2456. doi: 10.1021/bi00512a014. [DOI] [PubMed] [Google Scholar]
  28. Schnetkamp P. P. Sodium-calcium exchange in the outer segments of bovine rod photoreceptors. J Physiol. 1986 Apr;373:25–45. doi: 10.1113/jphysiol.1986.sp016033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schröder W. H., Fain G. L. Light-dependent calcium release from photoreceptors measured by laser micro-mass analysis. Nature. 1984 May 17;309(5965):268–270. doi: 10.1038/309268a0. [DOI] [PubMed] [Google Scholar]
  30. Somlyo A. P., Walz B. Elemental distribution in Rana pipiens retinal rods: quantitative electron probe analysis. J Physiol. 1985 Jan;358:183–195. doi: 10.1113/jphysiol.1985.sp015547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woodruff M. L., Fain G. L. Ca2+-dependent changes in cyclic GMP levels are not correlated with opening and closing of the light-dependent permeability of toad photoreceptors. J Gen Physiol. 1982 Oct;80(4):537–555. doi: 10.1085/jgp.80.4.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yau K. W., Nakatani K. Electrogenic Na-Ca exchange in retinal rod outer segment. Nature. 1984 Oct 18;311(5987):661–663. doi: 10.1038/311661a0. [DOI] [PubMed] [Google Scholar]
  33. Yau K. W., Nakatani K. Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature. 1985 Sep 19;317(6034):252–255. doi: 10.1038/317252a0. [DOI] [PubMed] [Google Scholar]
  34. Yoshikami S., George J. S., Hagins W. A. Light-induced calcium fluxes from outer segment layer of vertebrate retinas. Nature. 1980 Jul 24;286(5771):395–398. doi: 10.1038/286395a0. [DOI] [PubMed] [Google Scholar]
  35. Yoshikami S., Robinson W. E., Hagins W. A. Topology of the outer segment membranes of retinal rods and cones revealed by a fluorescent probe. Science. 1974 Sep 27;185(4157):1176–1179. doi: 10.1126/science.185.4157.1176. [DOI] [PubMed] [Google Scholar]
  36. Zimmerman A. L., Yamanaka G., Eckstein F., Baylor D. A., Stryer L. Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8813–8817. doi: 10.1073/pnas.82.24.8813. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES