Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1987 Mar 1;89(3):353–378. doi: 10.1085/jgp.89.3.353

Circadian rhythms in Limulus photoreceptors. I. Intracellular studies

PMCID: PMC2215907  PMID: 3559515

Abstract

The sensitivity of the lateral eye of the horseshoe crab, Limulus polyphemus, is modulated by efferent optic nerve impulses transmitted from a circadian clock located in the brain (Barlow, R. B., Jr., S. J. Bolanowski, and M. L. Brachman. 1977. Science. 197:86-89). At night, the efferent impulses invade the retinular, eccentric, and pigment cells of every ommatidium, inducing multiple anatomical and physiological changes that combine to increase retinal sensitivity as much as 100,000 times. We developed techniques for recording transmembrane potentials from a single cell in situ for several days to determine what circadian changes in retinal sensitivity originate in the primary phototransducing cell, the retinular cell. We found that the direct efferent input to the photoreceptor cell decreases its noise and increases its response. Noise is decreased by reducing the rate of spontaneous bumps by up to 100%. The response is increased by elevating photon catch (photons absorbed per flash) as much as 30 times, and increasing gain (response per absorbed photon) as much as 40%. The cellular mechanism for reducing the rate of spontaneous quantum bumps is not known. The mechanism for increasing gain appears to be the modulation of ionic conductances in the photoreceptor cell membrane. The mechanism for increasing photon catch is multiple changes in the anatomy of retinal cells. We combine these cellular events in a proposed scheme for the circadian rhythm in the intensity coding of single photoreceptors.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph A. R. Thermal and spectral sensitivities of discrete slow potentials in Limulus eye. J Gen Physiol. 1968 Oct;52(4):584–599. doi: 10.1085/jgp.52.4.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aréchiga H., Wiersma C. A. Circadian rhythm of responsiveness in crayfish visual units. J Neurobiol. 1969;1(1):71–85. doi: 10.1002/neu.480010107. [DOI] [PubMed] [Google Scholar]
  3. Barlow R. B., Jr, Bolanowski S. J., Jr, Brachman M. L. Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science. 1977 Jul 1;197(4298):86–89. doi: 10.1126/science.867057. [DOI] [PubMed] [Google Scholar]
  4. Barlow R. B., Jr, Chamberlain S. C., Levinson J. Z. Limulus brain modulates the structure and function of the lateral eyes. Science. 1980 Nov 28;210(4473):1037–1039. doi: 10.1126/science.7434015. [DOI] [PubMed] [Google Scholar]
  5. Barlow R. B., Jr Circadian rhythms in the Limulus visual system. J Neurosci. 1983 Apr;3(4):856–870. doi: 10.1523/JNEUROSCI.03-04-00856.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barlow R. B., Jr Inhibitory fields in the Limulus lateral eye. J Gen Physiol. 1969 Sep;54(3):383–396. doi: 10.1085/jgp.54.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barlow R. B., Jr, Ireland L. C., Kass L. Vision has a role in Limulus mating behaviour. Nature. 1982 Mar 4;296(5852):65–66. doi: 10.1038/296065a0. [DOI] [PubMed] [Google Scholar]
  8. Barlow R. B., Jr, Kaplan E. Properties of visual cells in the lateral eye of Limulus in situ: intracellular recordings. J Gen Physiol. 1977 Feb;69(2):203–220. doi: 10.1085/jgp.69.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barlow R. B., Jr, Kaplan E., Renninger G. H., Saito T. Efferent control of circadian rhythms in the Limulus lateral eye. Neurosci Res Suppl. 1985;2:S65–S78. doi: 10.1016/0921-8696(85)90007-6. [DOI] [PubMed] [Google Scholar]
  10. Batelle B. A., Evans J. A., Chamberlain S. C. Efferent fibers to Limulus eyes synthesize and release octopamine. Science. 1982 Jun 11;216(4551):1250–1252. doi: 10.1126/science.6123151. [DOI] [PubMed] [Google Scholar]
  11. Bayer D. S., Barlow R. B., Jr Limulus ventral eye. Physiological properties of photoreceptor cells in an organ culture medium. J Gen Physiol. 1978 Oct;72(4):539–563. doi: 10.1085/jgp.72.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Baylor D. A., Matthews G., Yau K. W. Two components of electrical dark noise in toad retinal rod outer segments. J Physiol. 1980 Dec;309:591–621. doi: 10.1113/jphysiol.1980.sp013529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brandenburg J., Bobbert A. C., Eggelmeyer F. Circadian changes in the response of the rabbits retina to flashes. Behav Brain Res. 1983 Jan;7(1):113–123. doi: 10.1016/0166-4328(83)90008-6. [DOI] [PubMed] [Google Scholar]
  14. Chamberlain S. C., Barlow R. B., Jr Light and efferent activity control rhabdom turnover in Limulus photoreceptors. Science. 1979 Oct 19;206(4416):361–363. doi: 10.1126/science.482946. [DOI] [PubMed] [Google Scholar]
  15. Chamberlain S. C., Barlow R. B., Jr Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting. J Neurosci. 1984 Nov;4(11):2792–2810. doi: 10.1523/JNEUROSCI.04-11-02792.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dowling J. E. Discrete potentials in the dark-adapted ye of the crab Limulus. Nature. 1968 Jan 6;217(5123):28–31. doi: 10.1038/217028a0. [DOI] [PubMed] [Google Scholar]
  17. Evans J. A., Chamberlain S. C., Battelle B. A. Autoradiographic localization of newly synthesized octopamine to retinal efferents in the Limulus visual system. J Comp Neurol. 1983 Oct 1;219(4):369–383. doi: 10.1002/cne.902190402. [DOI] [PubMed] [Google Scholar]
  18. FUORTES M. G., YEANDLE S. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS. J Gen Physiol. 1964 Jan;47:443–463. doi: 10.1085/jgp.47.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fahrenbach W. H. Anatomical circuitry of lateral inhibition in the eye of the horseshoe crab, Limulus polyphemus. Proc R Soc Lond B Biol Sci. 1985 Aug 22;225(1239):219–249. doi: 10.1098/rspb.1985.0060. [DOI] [PubMed] [Google Scholar]
  20. Kaplan E., Barlow R. B., Jr Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature. 1980 Jul 24;286(5771):393–395. doi: 10.1038/286393a0. [DOI] [PubMed] [Google Scholar]
  21. Kaplan E., Barlow R. B., Jr Energy, quanta and Limulus vision. Vision Res. 1976;16(7):745–751. doi: 10.1016/0042-6989(76)90185-1. [DOI] [PubMed] [Google Scholar]
  22. Kaplan E., Barlow R. B., Jr Properties of visual cells in the lateral eye of Limulus in situ. J Gen Physiol. 1975 Sep;66(3):303–326. doi: 10.1085/jgp.66.3.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kass L., Barlow R. B., Jr Efferent neurotransmission of circadian rhythms in Limulus lateral eye. I. Octopamine-induced increases in retinal sensitivity. J Neurosci. 1984 Apr;4(4):908–917. doi: 10.1523/JNEUROSCI.04-04-00908.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LaVail M. M. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science. 1976 Dec 3;194(4269):1071–1074. doi: 10.1126/science.982063. [DOI] [PubMed] [Google Scholar]
  25. Lamb T. D. The involvement of rod photoreceptors in dark adaptation. Vision Res. 1981;21(12):1773–1782. doi: 10.1016/0042-6989(81)90211-x. [DOI] [PubMed] [Google Scholar]
  26. Levinson G., Burnside B. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):294–303. [PubMed] [Google Scholar]
  27. Lisman J. E., Sheline Y. Analysis of the rhodopsin cycle in limulus ventral photoreceptors using the early receptor potential. J Gen Physiol. 1976 Nov;68(5):487–501. doi: 10.1085/jgp.68.5.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lisman J. The role of metarhodopsin in the generation of spontaneous quantum bumps in ultraviolet receptors of Limulus median eye. Evidence for reverse reactions into an active state. J Gen Physiol. 1985 Feb;85(2):171–187. doi: 10.1085/jgp.85.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miles F. A. Centrifugal effects in the avian retina. Science. 1970 Nov 27;170(3961):992–995. doi: 10.1126/science.170.3961.992. [DOI] [PubMed] [Google Scholar]
  30. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. O'Day P. M., Lisman J. E., Goldring M. Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors. J Gen Physiol. 1982 Feb;79(2):211–232. doi: 10.1085/jgp.79.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pearlman A. L., Hughes C. P. Functional role of efferents to the avian retina. II. Effects of reversible cooling of the isthmo-optic nucleus. J Comp Neurol. 1976 Mar 1;166(1):123–131. doi: 10.1002/cne.901660109. [DOI] [PubMed] [Google Scholar]
  33. Pepose J. S., Lisman J. E. Voltage-sensitive potassium channels in Limulus ventral photoreceptors. J Gen Physiol. 1978 Jan;71(1):101–120. doi: 10.1085/jgp.71.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Srebro R., Behbehani M. The thermal origin of spontaneous activity in the Limulus photoreceptor. J Physiol. 1972 Jul;224(2):349–361. doi: 10.1113/jphysiol.1972.sp009899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. TOMITA T. Mechanism of lateral inhibition in eye of Limulus. J Neurophysiol. 1958 Sep;21(5):419–429. doi: 10.1152/jn.1958.21.5.419. [DOI] [PubMed] [Google Scholar]
  36. Teirstein P. S., Goldman A. I., O'Brien P. J. Evidence for both local and central regulation of rat rod outer segment disc shedding. Invest Ophthalmol Vis Sci. 1980 Nov;19(11):1268–1273. [PubMed] [Google Scholar]
  37. Yeandle S., Spiegler J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J Gen Physiol. 1973 May;61(5):552–571. doi: 10.1085/jgp.61.5.552. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES