Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1987 Jun 1;89(6):905–920. doi: 10.1085/jgp.89.6.905

ADP binding to myosin cross-bridges and its effect on the cross-bridge detachment rate constants

PMCID: PMC2215967  PMID: 3039037

Abstract

We have studied the binding of adenosine diphosphate (ADP) to attached cross-bridges in chemically skinned rabbit psoas muscle fibers and the effect of that binding on the cross-bridge detachment rate constants. Cross-bridges with ADP bound to the active site behave very similarly to cross-bridges without any nucleotide at the active site. First, fiber stiffness is the same as in rigor, which presumably implies that, as in rigor, all the cross-bridges are attached. Second, the cross- bridge detachment rate constants in the presence of ADP, measured from the rate of decay of the force induced by a small stretch, are, over a time scale of minutes, similar to those seen in rigor. Because ADP binding to the active site does not cause an increase in the cross- bridge detachment rate constants, whereas binding of nucleotide analogues such as adenyl-5'-yl imidodiphosphate (AMP-PNP) and pyrophosphate (PPi) do, it was possible, by using ADP as a competitive inhibitor of PPi or AMP-PNP, to measure the competitive inhibition constant and thereby the dissociation constant for ADP binding to attached cross-bridges. We found that adding 175 microM ADP to 4 mM PPi or 4 mM AMP-PNP produces as much of a decrease in the apparent cross- bridge detachment rate constants as reducing the analogue concentration from 4 to 1 mM. This suggests that ADP is binding to attached cross- bridges with a dissociation constant of approximately 60 microM. This value is quite similar to that reported for ADP binding to actomyosin subfragment-1 (acto-S1) in solution, which provides further support for the idea that nucleotides and nucleotide analogues seem to bind about as strongly to attached cross-bridges in fibers as to acto-S1 in solution (Johnson, R.E., and P. H. Adams. 1984. FEBS Letters. 174:11- 14; Schoenberg, M., and E. Eisenberg. 1985. Biophysical Journal. 48:863- 871; Biosca, J.A., L.E. Greene, and E. Eisenberg. 1986. Journal of Biological Chemistry. 261:9793-9800).

Full Text

The Full Text of this article is available as a PDF (957.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biosca J. A., Greene L. E., Eisenberg E. Binding of ADP and ATP analogs to cross-linked and non-cross-linked acto X S-1. J Biol Chem. 1986 Jul 25;261(21):9793–9800. [PubMed] [Google Scholar]
  2. Brenner B., Chalovich J. M., Greene L. E., Eisenberg E., Schoenberg M. Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution. Biophys J. 1986 Oct;50(4):685–691. doi: 10.1016/S0006-3495(86)83509-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geeves M. A., Gutfreund H. The use of pressure perturbations to investigate the interaction of rabbit muscle myosin subfragment 1 with actin in the presence of MgADP. FEBS Lett. 1982 Apr 5;140(1):11–15. doi: 10.1016/0014-5793(82)80509-7. [DOI] [PubMed] [Google Scholar]
  5. Goody R. S., Leigh J. B., Mannherz H. G., Tregear R. T., Rosenbaum G. X-ray titration of binding of beta, gamma-imido-ATP to myosin in insect flight muscle. Nature. 1976 Aug 12;262(5569):613–615. doi: 10.1038/262613a0. [DOI] [PubMed] [Google Scholar]
  6. Greene L. E., Eisenberg E. Dissociation of the actin.subfragment 1 complex by adenyl-5'-yl imidodiphosphate, ADP, and PPi. J Biol Chem. 1980 Jan 25;255(2):543–548. [PubMed] [Google Scholar]
  7. Hibberd M. G., Trentham D. R. Relationships between chemical and mechanical events during muscular contraction. Annu Rev Biophys Biophys Chem. 1986;15:119–161. doi: 10.1146/annurev.bb.15.060186.001003. [DOI] [PubMed] [Google Scholar]
  8. Highsmith S. Interactions of the actin and nucleotide binding sites on myosin subfragment 1. J Biol Chem. 1976 Oct 25;251(20):6170–6172. [PubMed] [Google Scholar]
  9. Hofmann W., Goody R. S. The ternary complex formed between actin, myosin subfragment 1 and ATP (beta, gamma-NH). FEBS Lett. 1978 May 1;89(1):169–172. doi: 10.1016/0014-5793(78)80547-x. [DOI] [PubMed] [Google Scholar]
  10. Johnson R. E., Adams P. H. ADP binds similarly to rigor muscle myofibrils and to actomyosin-subfragment one. FEBS Lett. 1984 Aug 20;174(1):11–14. doi: 10.1016/0014-5793(84)81067-4. [DOI] [PubMed] [Google Scholar]
  11. Johnson R. E. Effect of ethylene glycol and Ca2+ on the binding of Mg2+ x adenyl-5'-yl imidodiphosphate to rabbit skeletal myofibrils. J Biol Chem. 1986 Jan 15;261(2):728–732. [PubMed] [Google Scholar]
  12. Kawai M. The role of orthophosphate in crossbridge kinetics in chemically skinned rabbit psoas fibres as detected with sinusoidal and step length alterations. J Muscle Res Cell Motil. 1986 Oct;7(5):421–434. doi: 10.1007/BF01753585. [DOI] [PubMed] [Google Scholar]
  13. Konrad M., Goody R. S. Kinetic and thermodynamic properties of the ternary complex between F-actin, myosin subfragment 1 and adenosine 5'-[beta, gamma-imido]triphosphate. Eur J Biochem. 1982 Nov 15;128(2-3):547–555. doi: 10.1111/j.1432-1033.1982.tb07000.x. [DOI] [PubMed] [Google Scholar]
  14. Kuhn H. J. Cross bridge slippage induced by the ATP analogue AMP-PNP and stretch in glycerol-extracted fibrillar muscle fibres. Biophys Struct Mech. 1978 Apr 13;4(2):159–168. doi: 10.1007/BF00539229. [DOI] [PubMed] [Google Scholar]
  15. Lymn R. W. Low-angle x-ray diagrams from skeletal muscle: the effect of AMP-PNP, a non-hydrolyzed analogue of ATP. J Mol Biol. 1975 Dec 25;99(4):567–582. doi: 10.1016/s0022-2836(75)80172-0. [DOI] [PubMed] [Google Scholar]
  16. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  17. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  18. Marston S. B., Rodger C. D., Tregear R. T. Changes in muscle crossbridges when beta, gamma-imido-ATP binds to myosin. J Mol Biol. 1976 Jun 14;104(1):263–276. doi: 10.1016/0022-2836(76)90012-7. [DOI] [PubMed] [Google Scholar]
  19. Marston S. B. The rates of formation and dissociation of actin-myosin complexes. Effects of solvent, temperature, nucleotide binding and head-head interactions. Biochem J. 1982 May 1;203(2):453–460. doi: 10.1042/bj2030453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marston S. The nucleotide complexes of myosin in glycerol-extracted muscle fibres. Biochim Biophys Acta. 1973 May 30;305(2):397–412. doi: 10.1016/0005-2728(73)90186-2. [DOI] [PubMed] [Google Scholar]
  21. Millar N. C., Geeves M. A. The limiting rate of the ATP-mediated dissociation of actin from rabbit skeletal muscle myosin subfragment 1. FEBS Lett. 1983 Aug 22;160(1-2):141–148. doi: 10.1016/0014-5793(83)80954-5. [DOI] [PubMed] [Google Scholar]
  22. Mornet D., Bertrand R., Pantel P., Audemard E., Kassab R. Structure of the actin-myosin interface. Nature. 1981 Jul 23;292(5821):301–306. doi: 10.1038/292301a0. [DOI] [PubMed] [Google Scholar]
  23. Pate E., Cooke R. The inhibition of muscle contraction by adenosine 5' (beta, gamma-imido) triphosphate and by pyrophosphate. Biophys J. 1985 Jun;47(6):773–780. doi: 10.1016/S0006-3495(85)83980-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Penningroth S. M., Olehnik K., Cheung A. ATP formation from adenyl-5'-yl imidodiphosphate, a nonhydrolyzable ATP analog. J Biol Chem. 1980 Oct 25;255(20):9545–9548. [PubMed] [Google Scholar]
  25. Persechini A., Stull J. T., Cooke R. The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem. 1985 Jul 5;260(13):7951–7954. [PubMed] [Google Scholar]
  26. Ryerse J. S. Developmental changes in Malpighian tubule cell structure. Tissue Cell. 1979;11(3):533–551. doi: 10.1016/0040-8166(79)90061-2. [DOI] [PubMed] [Google Scholar]
  27. Schoenberg M., Eisenberg E. Muscle cross-bridge kinetics in rigor and in the presence of ATP analogues. Biophys J. 1985 Dec;48(6):863–871. doi: 10.1016/S0006-3495(85)83847-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schoenberg M. Equilibrium muscle cross-bridge behavior. Theoretical considerations. Biophys J. 1985 Sep;48(3):467–475. doi: 10.1016/S0006-3495(85)83802-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sleep J., Glyn H. Inhibition of myofibrillar and actomyosin subfragment 1 adenosinetriphosphatase by adenosine 5'-diphosphate, pyrophosphate, and adenyl-5'-yl imidodiphosphate. Biochemistry. 1986 Mar 11;25(5):1149–1154. doi: 10.1021/bi00353a030. [DOI] [PubMed] [Google Scholar]
  30. Tözeren A., Schoenberg M. The effect of cross-bridge clustering and head-head competition on the mechanical response of skeletal muscle under equilibrium conditions. Biophys J. 1986 Nov;50(5):875–884. doi: 10.1016/S0006-3495(86)83528-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. White D. C. Rigor contraction and the effect of various phosphate compounds on glycerinated insect flight and vertebrate muscle. J Physiol. 1970 Jul;208(3):583–605. doi: 10.1113/jphysiol.1970.sp009138. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES