Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 Feb 1;91(2):223–242. doi: 10.1085/jgp.91.2.223

Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials

PMCID: PMC2216127  PMID: 2453603

Abstract

Glucagon-secreting alpha 2 cells were isolated from guinea pig pancreatic islets and used for electrophysiological studies of voltage- activated ionic conductances using the patch-clamp technique. The alpha 2 cells differed from beta cells in producing action potentials in the absence of glucose. The frequency of these potentials increased after addition of 10 mM arginine but remained unaffected in the presence of 5- 20 mM glucose. When studying the conductances underlying the action potentials, we identified a delayed rectifying K+ current, an Na+ current, and a Ca2+ current. The K+ current activated above -20 mV and then increased with the applied voltage. The Na+ current developed at potentials above -50 mV and reached a maximal peak amplitude of 550 pA during depolarizing pulses to -15 mV. The Na+ current inactivated rapidly (tau h approximately 0.7 ms at 0 mV). Half-maximal steady state inactivation was attained at -58 mV, and currents could no longer be elicited after conditioning pulses to potentials above -40 mV. The Ca2+ current first became detectable at -50 mV and reached a maximal amplitude of 90 pA (in extracellular [Ca2+] = 2.6 mM) at about -10 mV. Unlike the Na+ current, it inactivated little or not at all. Membrane potential measurements demonstrated that both the Ca2+ and Na+ currents contribute to the generation of the action potential. Whereas there was an absolute requirement of extracellular Ca2+ for action potentials to be elicited at all, suppression of the much larger Na+ current only reduced the upstroke velocity of the spikes. It is suggested that this behavior reflects the participation of a low-threshold Ca2+ conductance in the pacemaking of alpha 2 cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
  2. Berggren P. O., Ostenson C. G., Petersson B., Hellman B. Evidence for divergent glucose effects on calcium metabolism in pancreatic beta- and alpha 2-cells. Endocrinology. 1979 Dec;105(6):1463–1468. doi: 10.1210/endo-105-6-1463. [DOI] [PubMed] [Google Scholar]
  3. Bezanilla F. A high capacity data recording device based on a digital audio processor and a video cassette recorder. Biophys J. 1985 Mar;47(3):437–441. doi: 10.1016/S0006-3495(85)83935-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brolin S. E., Lundquist G., Petersson B. Isolation of A-2 cells from the pancreatic islets for ultramicrochemical analyses. Acta Endocrinol (Copenh) 1966 Oct;53(2):303–309. doi: 10.1530/acta.0.0530303. [DOI] [PubMed] [Google Scholar]
  5. Byerly L., Yazejian B. Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnaea stagnalis. J Physiol. 1986 Jan;370:631–650. doi: 10.1113/jphysiol.1986.sp015955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
  7. Edwards J. C., Taylor K. W. Fatty acids and the release of glucagon from isolated guinea-pig islets of Langerhans incubated in vitro. Biochim Biophys Acta. 1970 Aug 14;215(2):310–315. doi: 10.1016/0304-4165(70)90029-2. [DOI] [PubMed] [Google Scholar]
  8. Epstein G., Fanska R., Grodsky G. M. The effect of potassium and valinomycin on insulin and glucagon secretion in the perfused rat pancreas. Endocrinology. 1978 Dec;103(6):2207–2215. doi: 10.1210/endo-103-6-2207. [DOI] [PubMed] [Google Scholar]
  9. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fedulova S. A., Kostyuk P. G., Veselovsky N. S. Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol. 1985 Feb;359:431–446. doi: 10.1113/jphysiol.1985.sp015594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Findlay I., Dunne M. J., Petersen O. H. ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells. J Membr Biol. 1985;88(2):165–172. doi: 10.1007/BF01868430. [DOI] [PubMed] [Google Scholar]
  14. Fischmeister R., Ayer R. K., Jr, DeHaan R. L. Some limitations of the cell-attached patch clamp technique: a two-electrode analysis. Pflugers Arch. 1986 Jan;406(1):73–82. doi: 10.1007/BF00582957. [DOI] [PubMed] [Google Scholar]
  15. Gorus F. K., Malaisse W. J., Pipeleers D. G. Differences in glucose handling by pancreatic A- and B-cells. J Biol Chem. 1984 Jan 25;259(2):1196–1200. [PubMed] [Google Scholar]
  16. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  19. Henquin J. C., Meissner H. P. Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia. 1984 Oct 15;40(10):1043–1052. doi: 10.1007/BF01971450. [DOI] [PubMed] [Google Scholar]
  20. Ikeuchi M., Yagi K. Pancreatic A cell generates action potential. Jpn J Physiol. 1982;32(5):873–878. doi: 10.2170/jjphysiol.32.873. [DOI] [PubMed] [Google Scholar]
  21. Kawazu S., Ikeuchi M., Kikuchi M., Kanazawa Y., Fujimoto W. Y., Kosaka K. Dual effects of veratridine on glucagon and insulin secretion: dependence upon extracellular and intracellular calcium. Diabetes. 1981 May;30(5):446–450. doi: 10.2337/diab.30.5.446. [DOI] [PubMed] [Google Scholar]
  22. Lernmark A. The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia. 1974 Oct;10(5):431–438. doi: 10.1007/BF01221634. [DOI] [PubMed] [Google Scholar]
  23. Llinás R., Jahnsen H. Electrophysiology of mammalian thalamic neurones in vitro. Nature. 1982 Jun 3;297(5865):406–408. doi: 10.1038/297406a0. [DOI] [PubMed] [Google Scholar]
  24. Meda P., Kohen E., Kohen C., Rabinovitch A., Orci L. Direct communication of homologous and heterologous endocrine islet cells in culture. J Cell Biol. 1982 Jan;92(1):221–226. doi: 10.1083/jcb.92.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meda P., Santos R. M., Atwater I. Direct identification of electrophysiologically monitored cells within intact mouse islets of Langerhans. Diabetes. 1986 Feb;35(2):232–236. doi: 10.2337/diab.35.2.232. [DOI] [PubMed] [Google Scholar]
  26. Meissner H. P., Henquin J. C., Preissler M. Potassium dependence of the membrane potential of pancreatic B-cells. FEBS Lett. 1978 Oct 1;94(1):87–89. doi: 10.1016/0014-5793(78)80912-0. [DOI] [PubMed] [Google Scholar]
  27. Michaels R. L., Sheridan J. D. Islets of Langerhans: dye coupling among immunocytochemically distinct cell types. Science. 1981 Nov 13;214(4522):801–803. doi: 10.1126/science.6117129. [DOI] [PubMed] [Google Scholar]
  28. Orci L., Malaisse-Lagae F., Ravazzola M., Rouiller D., Renold A. E., Perrelet A., Unger R. A morphological basis for intercellular communication between alpha- and beta-cells in the endocrine pancreas. J Clin Invest. 1975 Oct;56(4):1066–1070. doi: 10.1172/JCI108154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. PETERSSON B., HELLERSTROM C., HELLMAN B. Some characteristics of the two types of A-cells in the islets of Langerhans of guinea-pigs. Z Zellforsch Mikrosk Anat. 1962;57:559–566. doi: 10.1007/BF00339882. [DOI] [PubMed] [Google Scholar]
  30. Petersson B., Hellerström C., Gunnarsson R. Structure and metabolism of the pancreatic islets in streptozotocin treated guinea pigs. Horm Metab Res. 1970 Nov;2(6):313–317. doi: 10.1055/s-0028-1095064. [DOI] [PubMed] [Google Scholar]
  31. Petersson B. Isolation and characterization of different types of pancreatic islet cells in guinea-pigs. Acta Endocrinol (Copenh) 1966 Nov;53(3):480–488. doi: 10.1530/acta.0.0530480. [DOI] [PubMed] [Google Scholar]
  32. Pipeleers D. G., in't Veld P. A., Van de Winkel M., Maes E., Schuit F. C., Gepts W. A new in vitro model for the study of pancreatic A and B cells. Endocrinology. 1985 Sep;117(3):806–816. doi: 10.1210/endo-117-3-806. [DOI] [PubMed] [Google Scholar]
  33. Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol. 1986 May;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rorsman P., Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch. 1985 Dec;405(4):305–309. doi: 10.1007/BF00595682. [DOI] [PubMed] [Google Scholar]
  35. Rorsman P. Two types of Ca2+ currents with different sensitivities to organic Ca2+ channel antagonists in guinea pig pancreatic alpha 2 cells. J Gen Physiol. 1988 Feb;91(2):243–254. doi: 10.1085/jgp.91.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
  37. Wesslén N., Pipeleers D., Van de Winkel M., Rorsman P., Hellman B. Glucose stimulates the entry of Ca2+ into the insulin-producing beta cells but not into the glucagon-producing alpha 2 cells. Acta Physiol Scand. 1987 Oct;131(2):230–234. doi: 10.1111/j.1748-1716.1987.tb08231.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES