Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 Mar 1;91(3):421–443. doi: 10.1085/jgp.91.3.421

Veratridine modifies open sodium channels

PMCID: PMC2216135  PMID: 2454286

Abstract

The state dependence of Na channel modification by the alkaloid neurotoxin veratridine was investigated with single-channel and whole- cell voltage-clamp recording in neuroblastoma cells. Several tests of whole-cell Na current behavior in the presence of veratridine supported the hypothesis that Na channels must be open in order to undergo modification by the neurotoxin. Modification was use dependent and required depolarizing pulses, the voltage dependence of production of modified channels was similar to that of normal current activation, and prepulses that caused inactivation of normal current had a parallel effect on the generation of modified current. This hypothesis was then examined directly at the single-channel level. Modified channel openings were easily distinguished from normal openings by their smaller current amplitude and longer burst times. The modification event was often seen as a sudden, dramatic reduction of current through an open Na channel and produced a somewhat flickery channel event having a mean lifetime of 1.6 s at an estimated absolute membrane potential of -45 mV (23 degrees C). The modified channel had a slope conductance of 4 pS, which was 20-25% the size of the slope conductance of normal channels with the 300 mM NaCl pipette solution used. Most modified channel openings were initiated by depolarizing pulses, began within the first 10 ms of the depolarizing step, and were closely associated with the prior opening of single normal Na channels, which supports the hypothesis that modification occurs from the normal open state.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  2. Aldrich R. W., Stevens C. F. Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J Neurosci. 1987 Feb;7(2):418–431. doi: 10.1523/JNEUROSCI.07-02-00418.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bean B. P. Sodium channel inactivation in the crayfish giant axon. Must channels open before inactivating? Biophys J. 1981 Sep;35(3):595–614. doi: 10.1016/S0006-3495(81)84815-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezanilla F. A high capacity data recording device based on a digital audio processor and a video cassette recorder. Biophys J. 1985 Mar;47(3):437–441. doi: 10.1016/S0006-3495(85)83935-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blatz A. L., Magleby K. L. Correcting single channel data for missed events. Biophys J. 1986 May;49(5):967–980. doi: 10.1016/S0006-3495(86)83725-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Catterall W. A. Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model. J Biol Chem. 1977 Dec 10;252(23):8669–8676. [PubMed] [Google Scholar]
  7. Catterall W. A. Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem. 1986;55:953–985. doi: 10.1146/annurev.bi.55.070186.004513. [DOI] [PubMed] [Google Scholar]
  8. Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
  9. Chinn K., Narahashi T. Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells. J Physiol. 1986 Nov;380:191–207. doi: 10.1113/jphysiol.1986.sp016280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garber S. S., Miller C. Single Na+ channels activated by veratridine and batrachotoxin. J Gen Physiol. 1987 Mar;89(3):459–480. doi: 10.1085/jgp.89.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gonoi T., Hille B. Gating of Na channels. Inactivation modifiers discriminate among models. J Gen Physiol. 1987 Feb;89(2):253–274. doi: 10.1085/jgp.89.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hille B., Leibowitz M. D., Sutro J. B., Schwarz J. R., Holan G. State-dependent modification of sodium channels by lipid-soluble agonists. Soc Gen Physiol Ser. 1987;41:109–124. [PubMed] [Google Scholar]
  13. Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khodorov B. I. Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes. Prog Biophys Mol Biol. 1985;45(2):57–148. doi: 10.1016/0079-6107(85)90005-7. [DOI] [PubMed] [Google Scholar]
  15. Khodorov B. I., Revenko S. V. Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve. Neuroscience. 1979;4(9):1315–1330. doi: 10.1016/0306-4522(79)90159-3. [DOI] [PubMed] [Google Scholar]
  16. Krueger B. K., Worley J. F., 3rd, French R. J. Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature. 1983 May 12;303(5913):172–175. doi: 10.1038/303172a0. [DOI] [PubMed] [Google Scholar]
  17. Leibowitz M. D., Schwarz J. R., Holan G., Hille B. Electrophysiological comparison of insecticide and alkaloid agonists of Na channels. J Gen Physiol. 1987 Jul;90(1):75–93. doi: 10.1085/jgp.90.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leibowitz M. D., Sutro J. B., Hille B. Voltage-dependent gating of veratridine-modified Na channels. J Gen Physiol. 1986 Jan;87(1):25–46. doi: 10.1085/jgp.87.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levinson S. R., Duch D. S., Urban B. W., Recio-Pinto E. The sodium channel from Electrophorus electricus. Ann N Y Acad Sci. 1986;479:162–178. doi: 10.1111/j.1749-6632.1986.tb15568.x. [DOI] [PubMed] [Google Scholar]
  20. Mozhayeva G. N., Naumov A. P., Negulyaev Y. A., Nosyreva E. D. The permeability of aconitine-modified sodium channels to univalent cations in myelinated nerve. Biochim Biophys Acta. 1977 May 2;466(3):461–473. doi: 10.1016/0005-2736(77)90339-x. [DOI] [PubMed] [Google Scholar]
  21. Nagy K., Kiss T., Hof D. Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states. Pflugers Arch. 1983 Dec;399(4):302–308. doi: 10.1007/BF00652757. [DOI] [PubMed] [Google Scholar]
  22. Naumov A. P., Neguliaev Iu A., Nosyreva E. D. Izmenenie selektivnosti natrievykh kanalov membrany nervnogo volokna pri deistvii veratrina. Tsitologiia. 1979 Jun;21(6):692–696. [PubMed] [Google Scholar]
  23. Quandt F. N., Narahashi T. Modification of single Na+ channels by batrachotoxin. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6732–6736. doi: 10.1073/pnas.79.21.6732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmidt H., Schmitt O. Effect of aconitine on the sodium permeability of the node of Ranvier. Pflugers Arch. 1974 Jun 11;349(2):133–148. doi: 10.1007/BF00586624. [DOI] [PubMed] [Google Scholar]
  25. Sigel E. Effects of veratridine on single neuronal sodium channels expressed in Xenopus oocytes. Pflugers Arch. 1987 Sep;410(1-2):112–120. doi: 10.1007/BF00581903. [DOI] [PubMed] [Google Scholar]
  26. Sigel E. Properties of single sodium channels translated by Xenopus oocytes after injection with messenger ribonucleic acid. J Physiol. 1987 May;386:73–90. doi: 10.1113/jphysiol.1987.sp016523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sutro J. B. Kinetics of veratridine action on Na channels of skeletal muscle. J Gen Physiol. 1986 Jan;87(1):1–24. doi: 10.1085/jgp.87.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ulbricht W. Effect of temperature on the slowly changing sodium permeability of veratrinized nodes of Ranvier. Pflugers Arch. 1969;311(1):73–95. doi: 10.1007/BF00588063. [DOI] [PubMed] [Google Scholar]
  29. Ulbricht W. Rate of veratridine action on the nodal membrane. I. Fast phase determined during sustained depolarization in the voltage clamp. Pflugers Arch. 1972;336(3):187–199. doi: 10.1007/BF00590043. [DOI] [PubMed] [Google Scholar]
  30. Ulbricht W. Rate of veratridine action on the nodal membrane. II. Fast and slow phase determined with periodic impulses in the voltage clamp. Pflugers Arch. 1972;336(3):201–212. doi: 10.1007/BF00590044. [DOI] [PubMed] [Google Scholar]
  31. Yamamoto D., Yeh J. Z., Narahashi T. Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channels. Biophys J. 1984 Jan;45(1):337–344. doi: 10.1016/S0006-3495(84)84159-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES