Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 Mar 1;91(3):351–371. doi: 10.1085/jgp.91.3.351

Membrane properties of isolated mudpuppy taste cells

PMCID: PMC2216137  PMID: 2454284

Abstract

The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage- dependent K+ conductance.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A., Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol. 1982 Sep;330:537–572. doi: 10.1113/jphysiol.1982.sp014357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akaike N., Noma A., Sato M. Electrical responses to frog taste cells to chemical stimuli. J Physiol. 1976 Jan;254(1):87–107. doi: 10.1113/jphysiol.1976.sp011223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avenet P., Lindemann B. Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol. 1987;97(3):223–240. doi: 10.1007/BF01869225. [DOI] [PubMed] [Google Scholar]
  4. Bader C. R., Bertrand D., Schwartz E. A. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol. 1982 Oct;331:253–284. doi: 10.1113/jphysiol.1982.sp014372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barish M. E. Differentiation of voltage-gated potassium current and modulation of excitability in cultured amphibian spinal neurones. J Physiol. 1986 Jun;375:229–250. doi: 10.1113/jphysiol.1986.sp016114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bean B. P. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 1985 Jul;86(1):1–30. doi: 10.1085/jgp.86.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blair L. A., Dionne V. E. Developmental acquisition of Ca2+-sensitivity by K+ channels in spinal neurones. Nature. 1985 May 23;315(6017):329–331. doi: 10.1038/315329a0. [DOI] [PubMed] [Google Scholar]
  8. Corey D. P., Dubinsky J. M., Schwartz E. A. The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J Physiol. 1984 Sep;354:557–575. doi: 10.1113/jphysiol.1984.sp015393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cummings T. A., Delay R. J., Roper S. D. Ultrastructure of apical specializations of taste cells in the mudpuppy, Necturus maculosus. J Comp Neurol. 1987 Jul 22;261(4):604–615. doi: 10.1002/cne.902610411. [DOI] [PubMed] [Google Scholar]
  10. Farbman A. I., Yonkers J. D. Fine structure of the taste bud in the mud puppy, Necturus maculosus. Am J Anat. 1971 Jul;131(3):353–369. doi: 10.1002/aja.1001310306. [DOI] [PubMed] [Google Scholar]
  11. Galvan M., Sedlmeir C. Outward currents in voltage-clamped rat sympathetic neurones. J Physiol. 1984 Nov;356:115–133. doi: 10.1113/jphysiol.1984.sp015456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagiwara S., Takahashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol. 1974;18(1):61–80. doi: 10.1007/BF01870103. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Heck G. L., Mierson S., DeSimone J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984 Jan 27;223(4634):403–405. doi: 10.1126/science.6691151. [DOI] [PubMed] [Google Scholar]
  16. Kashiwayanagi M., Miyake M., Kurihara K. Voltage-dependent Ca2+ channel and Na+ channel in frog taste cells. Am J Physiol. 1983 Jan;244(1):C82–C88. doi: 10.1152/ajpcell.1983.244.1.C82. [DOI] [PubMed] [Google Scholar]
  17. Kinnamon S. C., Roper S. D. Passive and active membrane properties of mudpuppy taste receptor cells. J Physiol. 1987 Feb;383:601–614. doi: 10.1113/jphysiol.1987.sp016431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewis R. S., Hudspeth A. J. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature. 1983 Aug 11;304(5926):538–541. doi: 10.1038/304538a0. [DOI] [PubMed] [Google Scholar]
  19. Maue R. A., Dionne V. E. Preparation of isolated mouse olfactory receptor neurons. Pflugers Arch. 1987 Jul;409(3):244–250. doi: 10.1007/BF00583472. [DOI] [PubMed] [Google Scholar]
  20. Meech R. W. Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng. 1978;7:1–18. doi: 10.1146/annurev.bb.07.060178.000245. [DOI] [PubMed] [Google Scholar]
  21. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  22. Okada Y., Miyamoto T., Sato T. Arterial perfusion of frog tongue for intracellular recording of taste cell receptor potential. Comp Biochem Physiol A Comp Physiol. 1985;81(2):247–250. doi: 10.1016/0300-9629(85)90129-x. [DOI] [PubMed] [Google Scholar]
  23. Ozeki M. Conductance change associated with receptor potentials of gustatory cells in rat. J Gen Physiol. 1971 Dec;58(6):688–699. doi: 10.1085/jgp.58.6.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roper S. Regenerative impulses in taste cells. Science. 1983 Jun 17;220(4603):1311–1312. doi: 10.1126/science.6857254. [DOI] [PubMed] [Google Scholar]
  25. Sato T., Beidler L. M. Dependence of gustatory neural response on depolarizing and hyperpolarizing receptor potentials of taste cells in the rat. Comp Biochem Physiol A Comp Physiol. 1983;75(2):131–137. doi: 10.1016/0300-9629(83)90058-0. [DOI] [PubMed] [Google Scholar]
  26. Sato T. Recent advances in the physiology of taste cells. Prog Neurobiol. 1980;14(1):25–67. doi: 10.1016/0301-0082(80)90003-9. [DOI] [PubMed] [Google Scholar]
  27. Stanfield P. R., Nakajima Y., Yamaguchi K. Substance P raises neuronal membrane excitability by reducing inward rectification. Nature. 1985 Jun 6;315(6019):498–501. doi: 10.1038/315498a0. [DOI] [PubMed] [Google Scholar]
  28. Sturek M., Hermsmeyer K. Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science. 1986 Jul 25;233(4762):475–478. doi: 10.1126/science.2425434. [DOI] [PubMed] [Google Scholar]
  29. Tonosaki K., Funakoshi M. Intracellular taste cell responses of mouse. Comp Biochem Physiol A Comp Physiol. 1984;78(4):651–656. doi: 10.1016/0300-9629(84)90611-x. [DOI] [PubMed] [Google Scholar]
  30. West C. H., Bernard R. A. Intracellular characteristics and responses of taste bud and lingual cells of the mudpuppy. J Gen Physiol. 1978 Sep;72(3):305–326. doi: 10.1085/jgp.72.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES