Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Dec;152(3):1105–1110. doi: 10.1128/jb.152.3.1105-1110.1982

Enzymatic activities for interconversion of purines in spirochetes.

E Canale-Parola, G W Kidder
PMCID: PMC221615  PMID: 6292162

Abstract

Enzymatic activities that catalyze the interconversion of purines and purine derivatives were detected in cell extracts of Spirochaeta aurantia, Spirochaeta stenostrepta, Treponema succinifaciens, and Treponema denticola. Phosphoribosyltransferase activities present in cell extracts of each of the four spirochete species functioned in the conversion of adenine, hypoxanthine, and guanine to AMP, IMP, and GMP, respectively. Nucleotidase activities in the extracts mediated the formation of nucleosides from nucleotides. The conversion of adenosine, inosine, and guanosine to the respective purine bases was catalyzed by nucleoside phosphorylase and, in some instances, by nucleoside hydrolase activities. Guanine deaminase activity was found in both S. aurantia and S. stenostrepta, whereas adenosine deaminase activity was detected only in S. aurantia. Adenine deaminase activity in T. succinifaciens extracts was sensitive to O2 and was relatively resistant to heating. Our results indicate that the four species of spirochetes studied possess a broad spectrum of purine interconversion enzymes. It is suggested that these enzymes may function in metabolic processes important for the survival of spirochetes in nutrient-poor natural environments.

Full text

PDF
1105

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blakemore R. P., Canale-Parola E. Arginine catabolism by Treponema denticola. J Bacteriol. 1976 Nov;128(2):616–622. doi: 10.1128/jb.128.2.616-622.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breznak J. A., Canale-Parola E. Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch Microbiol. 1975 Sep 30;105(1):1–12. doi: 10.1007/BF00447104. [DOI] [PubMed] [Google Scholar]
  3. Canale-Parola E. Motility and chemotaxis of spirochetes. Annu Rev Microbiol. 1978;32:69–99. doi: 10.1146/annurev.mi.32.100178.000441. [DOI] [PubMed] [Google Scholar]
  4. Canale-Parola E. Physiology and evolution of spirochetes. Bacteriol Rev. 1977 Mar;41(1):181–204. doi: 10.1128/br.41.1.181-204.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cwyk W. M., Canale-Parola E. Treponema succinifaciens sp. nov., an anaerobic spirochete from the swine intestine. Arch Microbiol. 1979 Sep;122(3):231–239. doi: 10.1007/BF00411285. [DOI] [PubMed] [Google Scholar]
  6. Gronlund A. F., Campbell J. J. Enzymatic Degradation of Ribosomes During Endogenous Respiration of Pseudomonas aeruginosa. J Bacteriol. 1965 Jul;90(1):1–7. doi: 10.1128/jb.90.1.1-7.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harwood C. S., Canale-Parola E. Adenosine 5'-triphosphate- yielding pathways of branched-chain amino acid fermentation by a marine spirochete. J Bacteriol. 1981 Oct;148(1):117–123. doi: 10.1128/jb.148.1.117-123.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harwood C. S., Canale-Parola E. Branched-chain amino acid fermentation by a marine spirochete: strategy for starvation survival. J Bacteriol. 1981 Oct;148(1):109–116. doi: 10.1128/jb.148.1.109-116.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henderson J. F., Brox L., Zombor G., Hunting D., Lomax C. A. Specificity of adenosine deaminase inhibitors. Biochem Pharmacol. 1977 Nov 1;26(21):1967–1972. doi: 10.1016/0006-2952(77)90003-x. [DOI] [PubMed] [Google Scholar]
  10. Hoffmeyer J., Neuhard J. Metabolism of exogenous purine bases and nucleosides by Salmonella typhimurium. J Bacteriol. 1971 Apr;106(1):14–24. doi: 10.1128/jb.106.1.14-24.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson R. C., Rogers P. Metabolism of leptospires. II. The action of 8-azaguanine. Can J Microbiol. 1967 Dec;13(12):1621–1629. doi: 10.1139/m67-212. [DOI] [PubMed] [Google Scholar]
  12. Kidder G. W., Dewey V. C., Nolan L. L. Adenine deaminase of a eukaryotic animal cell, Crithidia fasciculata. Arch Biochem Biophys. 1977 Sep;183(1):7–12. doi: 10.1016/0003-9861(77)90412-x. [DOI] [PubMed] [Google Scholar]
  13. Kidder G. W., Nolan L. L. Adenine aminohydrolase: occurrence and possible significance in trypanosomid flagellates. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3670–3672. doi: 10.1073/pnas.76.8.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kidder G. W., Nolan L. L., Dewey V. C. The purine phosphoribosyltransferases of Crithidia fasciculata. J Parasitol. 1979 Aug;65(4):520–525. [PubMed] [Google Scholar]
  15. Mink R. W., Hespell R. B. Long-term nutrient starvation of continuously cultured (glucose-limited) Selenomonas ruminantium. J Bacteriol. 1981 Nov;148(2):541–550. doi: 10.1128/jb.148.2.541-550.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. POSTGATE J. R., HUNTER J. R. The survival of starved bacteria. J Gen Microbiol. 1962 Oct;29:233–263. doi: 10.1099/00221287-29-2-233. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES