Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 May 1;91(5):737–757. doi: 10.1085/jgp.91.5.737

Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles

PMCID: PMC2216151  PMID: 3418320

Abstract

K contractures and two-microelectrode voltage-clamp techniques were used to measure inactivation of excitation-contraction coupling in small bundles of fibers from rat extensor digitorum longus (e.d.l.) and soleus muscles at 21 degrees C. The rate of spontaneous relaxation was faster in e.d.l. fibers: the time for 120 mM K contractures to decay to 50% of maximum tension was 9.8 +/- 0.5 s (mean +/- SEM) in e.d.l. and 16.8 +/- 1.7 s in soleus. The rate of decay depended on membrane potential: in e.d.l., the 50% decay time was 14.3 +/- 0.7 s for contractures in 80 mM K (Vm = 25 mV) and 4.9 +/- 0.4 s in 160 mM K (Vm = -3 mV). In contrast to activation, which occurred with less depolarization in soleus fibers, steady state inactivation required more depolarization: after 3 min at -40 mV in 40 mM K, the 200 mM K contracture amplitude in e.d.l. fell to 28 +/- 10% (n = 5) of control, but remained at 85 +/- 2% (n = 6) of control in soleus. These different inactivation properties in e.d.l. and soleus fibers were not influenced by the fact that the 200 mM K solution used to test for steady state inactivation produced contractures that were maximal in soleus fibers but submaximal in e.d.l.: a relatively similar depression was recorded in maximal (200 mM K) and submaximal (60 and 80 mM K) contracture tension. A steady state "pedestal" of tension was observed with maintained depolarization after K contracture relaxation and was larger in soleus than in e.d.l. fibers. The pedestal tension was attributed to the overlap between the activation and inactivation curves for tension vs. membrane potential, which was greater in soleus than in e.d.l. fibers. The K contracture results were confirmed with the two- microelectrode voltage clamp: the contraction threshold increased to more positive potentials at holding potentials of -50 mV in e.d.l. or - 40 mV in soleus. At holding potentials of -30 mV in e.d.l. or 0 mV in soleus, contraction could not be evoked by 15-ms pulses to +20 mV. Both K contracture and voltage-clamp experiments revealed that activation in soleus fibers occurred with a smaller transient depolarization and was maintained with greater steady state depolarization than in e.d.l. fibers. The K contracture and voltage-clamp results are described by a model in which contraction depends on the formation of a threshold concentration of activator from a voltage-sensitive molecule that can exist in the precursor, activator, or inactive states.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Blinks J. R., Godt R. E. Influence of deuterium oxide on calcium transients and myofibrillar responses of frog skeletal muscle. J Physiol. 1984 Sep;354:225–251. doi: 10.1113/jphysiol.1984.sp015373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anwyl R., Bruton J. D., McLoughlin J. V. Potassium contractures and mechanical activation in rat skeletal muscle: effects of multivalent cations, temperature and tetracaine. Br J Pharmacol. 1984 Jul;82(3):615–621. doi: 10.1111/j.1476-5381.1984.tb10800.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Attwell D., Cohen I., Eisner D., Ohba M., Ojeda C. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres. Pflugers Arch. 1979 Mar 16;379(2):137–142. doi: 10.1007/BF00586939. [DOI] [PubMed] [Google Scholar]
  4. Baylor S. M., Chandler W. K., Marshall M. W. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients. J Physiol. 1983 Nov;344:625–666. doi: 10.1113/jphysiol.1983.sp014959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burke R. E. Motor unit properties and selective involvement in movement. Exerc Sport Sci Rev. 1975;3:31–81. [PubMed] [Google Scholar]
  6. Caputo C., Bezanilla F., Horowicz P. Depolarization-contraction coupling in short frog muscle fibers. A voltage clamp study. J Gen Physiol. 1984 Jul;84(1):133–154. doi: 10.1085/jgp.84.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caputo C., Fernandez de Bolaños P. Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog. J Physiol. 1979 Apr;289:175–189. doi: 10.1113/jphysiol.1979.sp012731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caputo C. The time course of potassium contractures of single muscle fibres. J Physiol. 1972 Jun;223(2):483–505. doi: 10.1113/jphysiol.1972.sp009859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colatsky T. J. Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers. An effect on steady state sodium currents? Circ Res. 1982 Jan;50(1):17–27. doi: 10.1161/01.res.50.1.17. [DOI] [PubMed] [Google Scholar]
  11. Dulhunty A. F. Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. J Membr Biol. 1979 Apr 9;45(3-4):293–310. doi: 10.1007/BF01869290. [DOI] [PubMed] [Google Scholar]
  12. Dulhunty A. F., Dlutowski M. Fiber types in red and white segments of rat sternomastoid muscle. Am J Anat. 1979 Sep;156(1):51–61. doi: 10.1002/aja.1001560105. [DOI] [PubMed] [Google Scholar]
  13. Dulhunty A. F., Gage P. W. Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rats. J Physiol. 1983 Aug;341:213–231. doi: 10.1113/jphysiol.1983.sp014802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dulhunty A. F., Gage P. W. Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles. J Physiol. 1985 Jan;358:75–89. doi: 10.1113/jphysiol.1985.sp015541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dulhunty A. F., Gage P. W., Lamb G. D. Potassium contractures and asymmetric charge movement in extensor digitorum longus and soleus muscles from thyrotoxic rats. J Muscle Res Cell Motil. 1987 Aug;8(4):289–296. doi: 10.1007/BF01568885. [DOI] [PubMed] [Google Scholar]
  16. Dulhunty A., Carter G., Hinrichsen C. The membrane capacity of mammalian skeletal muscle fibres. J Muscle Res Cell Motil. 1984 Jun;5(3):315–332. doi: 10.1007/BF00713110. [DOI] [PubMed] [Google Scholar]
  17. Grabowski W., Lobsiger E. A., Lüttgau H. C. The effect of repetitive stimulation at low frequencies upon the electrical and mechanical activity of single muscle fibres. Pflugers Arch. 1972;334(3):222–239. doi: 10.1007/BF00626225. [DOI] [PubMed] [Google Scholar]
  18. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hanson J. The effects of repetitive stimulation on the action potential and the twitch of rat muscle. Acta Physiol Scand. 1974 Feb;90(2):387–400. doi: 10.1111/j.1748-1716.1974.tb05600.x. [DOI] [PubMed] [Google Scholar]
  20. Heistracher P., Hunt C. C. The relation of membrane changes ot contraction in twitch muscle fibres. J Physiol. 1969 May;201(3):589–611. doi: 10.1113/jphysiol.1969.sp008774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hennig R., Lømo T. Firing patterns of motor units in normal rats. Nature. 1985 Mar 14;314(6007):164–166. doi: 10.1038/314164a0. [DOI] [PubMed] [Google Scholar]
  22. Kovács L., Ríos E., Schneider M. F. Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature. 1979 May 31;279(5712):391–396. doi: 10.1038/279391a0. [DOI] [PubMed] [Google Scholar]
  23. Lomo T., Westgaard R. H., Dahl H. A. Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc R Soc Lond B Biol Sci. 1974 Aug 27;187(1086):99–103. doi: 10.1098/rspb.1974.0064. [DOI] [PubMed] [Google Scholar]
  24. Léoty C., Léauté M. Membrane potential and contractures in segments cut from rat fast and slow twitch muscles. Pflugers Arch. 1982 Oct;395(1):42–48. doi: 10.1007/BF00584966. [DOI] [PubMed] [Google Scholar]
  25. Lüttgau H. C., Oetliker H. The action of caffeine on the activation of the contractile mechanism in straited muscle fibres. J Physiol. 1968 Jan;194(1):51–74. doi: 10.1113/jphysiol.1968.sp008394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lüttgau H. C., Spiecker W. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog. J Physiol. 1979 Nov;296:411–429. doi: 10.1113/jphysiol.1979.sp013013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Melzer W., Rios E., Schneider M. F. Time course of calcium release and removal in skeletal muscle fibers. Biophys J. 1984 Mar;45(3):637–641. doi: 10.1016/S0006-3495(84)84203-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Metzger J. M., Fitts R. H. Fatigue from high- and low-frequency muscle stimulation: role of sarcolemma action potentials. Exp Neurol. 1986 Aug;93(2):320–333. doi: 10.1016/0014-4886(86)90193-7. [DOI] [PubMed] [Google Scholar]
  29. Nagai T., Takauji M., Kosaka I., Tsutsu-ura M. Biphasic time course of inactivation of potassium contractures in single twitch muscle fibers of the frog. Jpn J Physiol. 1979;29(5):539–549. doi: 10.2170/jjphysiol.29.539. [DOI] [PubMed] [Google Scholar]
  30. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  31. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  32. Rakowski R. F. Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization. J Physiol. 1981 Aug;317:129–148. doi: 10.1113/jphysiol.1981.sp013817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. SANDOW A., KAHN A. J. The immediate effects of potassium on responses of skeletal muscle. J Cell Physiol. 1952 Aug;40(1):89–114. doi: 10.1002/jcp.1030400107. [DOI] [PubMed] [Google Scholar]
  34. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  35. Smith J. S., Coronado R., Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature. 1985 Aug 1;316(6027):446–449. doi: 10.1038/316446a0. [DOI] [PubMed] [Google Scholar]
  36. Stephenson D. G., Williams D. A. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol. 1981 Aug;317:281–302. doi: 10.1113/jphysiol.1981.sp013825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suarez-Isla B. A., Orozco C., Heller P. F., Froehlich J. P. Single calcium channels in native sarcoplasmic reticulum membranes from skeletal muscle. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7741–7745. doi: 10.1073/pnas.83.20.7741. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES