Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 May 1;91(5):703–723. doi: 10.1085/jgp.91.5.703

Dynamic relationship between the slow potential and spikes in cockroach ocellar neurons

PMCID: PMC2216152  PMID: 3418318

Abstract

The relationship between the slow potential and spikes of second-order ocellar neurons of the cockroach, Periplaneta americana, was studied. The stimulus was a sinusoidally modulated light with various mean illuminances. A solitary spike was generated at the depolarizing phase of the modulation response. Analysis of the relationship between the amplitude/frequency of voltage modulation and the rate of spike generation showed that (a) the spike initiation process was bandpass at approximately 0.5-5 Hz, (b) the process contained a dynamic linearity and a static nonlinearity, and (c) the spike threshold at optimal frequencies (0.5-5 Hz) remained unchanged over a mean illuminance range of 3.6 log units, whereas (d) the spike threshold at frequencies of less than 0.5 Hz was lower at a dimmer mean illuminance. The voltage noise in the response was larger and the mean membrane potential level was more positive at a dimmer mean illuminance. Steady or noise current injection during sinusoidal light stimulation showed that (a) the decrease in the spike threshold at a dimmer mean illuminance was due to the increase in the noise variance: the noise had facilitatory effects on the spike initiation; and (b) the change in the mean potential level had little effect on the spike threshold. We conclude that fundamental signal modifications occur during the spike initiation in the cockroach ocellar neuron, a finding that differs from the spike initiation process in other visual systems, including Limulus eye and vertebrate retina, in which it is presumed that little signal modification occurs at the analog-to-digital conversion process.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashmore J. F., Copenhagen D. R. An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. J Physiol. 1983 Jul;340:569–597. doi: 10.1113/jphysiol.1983.sp014781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryant H. L., Segundo J. P. Spike initiation by transmembrane current: a white-noise analysis. J Physiol. 1976 Sep;260(2):279–314. doi: 10.1113/jphysiol.1976.sp011516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chappell R. L., Dowling J. E. Neural organization of the median ocellus of the dragonfly. I. Intracellular electrical activity. J Gen Physiol. 1972 Aug;60(2):121–147. doi: 10.1085/jgp.60.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chappell R. L., Naka K., Sakuranaga M. Dynamics of turtle horizontal cell response. J Gen Physiol. 1985 Sep;86(3):423–453. doi: 10.1085/jgp.86.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
  6. Dowling J. E., Chappell R. L. Neural organization of the median ocellus of the dragonfly. II. Synaptic structure. J Gen Physiol. 1972 Aug;60(2):148–165. doi: 10.1085/jgp.60.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guttman R., Feldman L., Jakobsson E. Frequency entrainment of squid axon membrane. J Membr Biol. 1980 Aug 21;56(1):9–18. doi: 10.1007/BF01869347. [DOI] [PubMed] [Google Scholar]
  9. Holden A. V. The response of excitable membrane models to a cyclic input. Biol Cybern. 1976 Jan 2;21(1):1–7. doi: 10.1007/BF00326666. [DOI] [PubMed] [Google Scholar]
  10. Knight B. W. Dynamics of encoding in a population of neurons. J Gen Physiol. 1972 Jun;59(6):734–766. doi: 10.1085/jgp.59.6.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knight B. W. The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. Experimental evidence for resonant enhancement in the population response. J Gen Physiol. 1972 Jun;59(6):767–778. doi: 10.1085/jgp.59.6.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knight B. W., Toyoda J. I., Dodge F. A., Jr A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J Gen Physiol. 1970 Oct;56(4):421–437. doi: 10.1085/jgp.56.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mizunami M., Tateda H., Naka K. Dynamics of cockroach ocellar neurons. J Gen Physiol. 1986 Aug;88(2):275–292. doi: 10.1085/jgp.88.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Naka K. I., Chan R. Y., Yasui S. Adaptation in catfish retina. J Neurophysiol. 1979 Mar;42(2):441–454. doi: 10.1152/jn.1979.42.2.441. [DOI] [PubMed] [Google Scholar]
  15. Naka K. I., Itoh M. A., Chappell R. L. Dynamics of turtle cones. J Gen Physiol. 1987 Feb;89(2):321–337. doi: 10.1085/jgp.89.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RUCK P. Electrophysiology of the insect dorsal ocellus. I. Origin of the components of the electroretinogram. J Gen Physiol. 1961 Jan;44:605–627. doi: 10.1085/jgp.44.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sakuranaga M., Ando Y., Naka K. Dynamics of the ganglion cell response in the catfish and frog retinas. J Gen Physiol. 1987 Aug;90(2):229–259. doi: 10.1085/jgp.90.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schellart N. A., Spekreijse H. Dynamic characteristics of retinal ganglion cell responses in goldfish. J Gen Physiol. 1972 Jan;59(1):1–21. doi: 10.1085/jgp.59.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stuart A. E., Oertel D. Neuronal properties underlying processing of visual information in the barnacle. Nature. 1978 Sep 28;275(5678):287–290. doi: 10.1038/275287a0. [DOI] [PubMed] [Google Scholar]
  20. Tranchina D., Gordon J., Shapley R. Spatial and temporal properties of luminosity horizontal cells in the turtle retina. J Gen Physiol. 1983 Nov;82(5):573–598. doi: 10.1085/jgp.82.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Victor J. D., Shapley R. M. Receptive field mechanisms of cat X and Y retinal ganglion cells. J Gen Physiol. 1979 Aug;74(2):275–298. doi: 10.1085/jgp.74.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Victor J. D. The dynamics of the cat retinal X cell centre. J Physiol. 1987 May;386:219–246. doi: 10.1113/jphysiol.1987.sp016531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weber G., Renner M. The ocellus of the cockroach, Periplaneta americana (Blattariae): receptory area. Cell Tissue Res. 1976 May 6;168(2):209–222. doi: 10.1007/BF00215878. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES