Abstract
The possible interaction among different sensory units in the frog tongue was studied using several single papillae dually innervated by the medial and lateral branches of the glossopharyngeal (IXth) nerve. The afferent activity in one branch exposed to NaCl stimulation of the papilla revealed marked inhibition after antidromic electrical stimulation (100 Hz, 30 s, and 3 V) of the other branch. The degree of inhibition depended on the number of sensory responses observed in the electrically stimulated branch as well as the nature of the stimulated sensory units. Statistical analysis suggested that antidromic activation of gustatory units conducting the responses to NaCl and quinine and slowly adapting mechanosensitive units produced a large antidromic inhibition amounting to 19-25%, but that of gustatory units conducting the responses to acetic acid and rapidly adapting mechanosensitive units gave rise to only a slight inhibition. To examine the differential effects of these sensory units in antidromic inhibition, antidromic impulses were evoked by chemical stimulation of the adjacent papilla neuronally connected with the dually innervated papilla under study. Antidromic volleys of impulses elicited by NaCl or quinine stimulation produced a large inhibition of the afferent activity in the other branch, as induced by NaCl stimulation of the dually innervated papilla. Plausible mechanisms of synaptic interaction in peripheral gustatory systems are considered.
Full Text
The Full Text of this article is available as a PDF (1,022.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baylor D. A., Nicholls J. G. After-effects of nerve impulses on signalling in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):571–589. doi: 10.1113/jphysiol.1969.sp008880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Nicholls J. G. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):555–569. doi: 10.1113/jphysiol.1969.sp008879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brush A. D., Halpern B. P. Centrifugal control of gustatory responses. Physiol Behav. 1970 Jul;5(7):743–746. doi: 10.1016/0031-9384(70)90273-8. [DOI] [PubMed] [Google Scholar]
- CHERNETSKI K. E. CEPHALIC SYMPATHETIC FIBERS IN THE FROG. J Comp Neurol. 1964 Apr;122:173–179. doi: 10.1002/cne.901220204. [DOI] [PubMed] [Google Scholar]
- CHERNETSKI K. E. SYMPATHETIC ENHANCEMENT OF PERIPHERAL SENSORY INPUT IN THE FROG. J Neurophysiol. 1964 May;27:493–515. doi: 10.1152/jn.1964.27.3.493. [DOI] [PubMed] [Google Scholar]
- DeHan R. S., Graziadei P. The innervation of frog's taste organ: "a histochemical study". Life Sci. 1973 Nov 16;13(10):1435–1449. doi: 10.1016/0024-3205(73)90165-3. [DOI] [PubMed] [Google Scholar]
- Düring M. V., Andres K. H. The ultrastructure of taste and touch receptors of the frog's taste organ. Cell Tissue Res. 1976 Jan 26;165(2):185–198. doi: 10.1007/BF00226658. [DOI] [PubMed] [Google Scholar]
- Halpern B. P., Tapper D. N. Taste stimuli: quality coding time. Science. 1971 Mar 26;171(3977):1256–1258. doi: 10.1126/science.171.3977.1256. [DOI] [PubMed] [Google Scholar]
- Hellekant G. On the relation between the chorda tympani nerve response, arterial oxygen tension and blood flow in the tongue of the rat. Acta Physiol Scand. 1971 Aug;82(4):453–459. doi: 10.1111/j.1748-1716.1971.tb04989.x. [DOI] [PubMed] [Google Scholar]
- Ishiko N., Hanamori T., Murayama N. Frog's tongue receptive areas: neural organization and gustatory function. Experientia. 1979 Jun 15;35(6):773–774. doi: 10.1007/BF01968239. [DOI] [PubMed] [Google Scholar]
- Ishiko N. Local gustatory functions associated with segmental organization of the anterior portion of cat's tongue. Exp Neurol. 1974 Nov;45(2):341–354. doi: 10.1016/0014-4886(74)90123-x. [DOI] [PubMed] [Google Scholar]
- KUSANO K. Analysis of the single unit activity of gustatory receptors in the frog tongue. Jpn J Physiol. 1960 Dec 15;10:620–633. doi: 10.2170/jjphysiol.10.620. [DOI] [PubMed] [Google Scholar]
- Miller I. J., Jr Peripheral interactions among single papilla inputs to gustatory nerve fibers. J Gen Physiol. 1971 Jan;57(1):1–25. doi: 10.1085/jgp.57.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murayama N., Ishiko N. Effect of antidromic stimulation of the glossopharyngeal nerve on afferent discharges occurring with and without sensory stimulation of the frog tongue. Neurosci Lett. 1985 Sep 16;60(1):95–99. doi: 10.1016/0304-3940(85)90387-8. [DOI] [PubMed] [Google Scholar]
- Murayama N., Ishiko N. Selective depressant action of antidromic impulses on gustatory nerve signals. J Gen Physiol. 1986 Aug;88(2):219–236. doi: 10.1085/jgp.88.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAPUZZI G., CASELLA C. INNERVATION OF THE FUNGIFORM PAPILLAE IN THE FROG TONGUE. J Neurophysiol. 1965 Jan;28:154–165. doi: 10.1152/jn.1965.28.1.154. [DOI] [PubMed] [Google Scholar]
- Syková E., Shirayev B., Kríz N., Vyklický L. Accumulation of extracellular potassium in the spinal cord of frog. Brain Res. 1976 Apr 23;106(2):413–417. doi: 10.1016/0006-8993(76)91039-8. [DOI] [PubMed] [Google Scholar]
- Taglietti V., Casella C., Ferrari E. Interactions between taste receptors in the frog tongue. Pflugers Arch. 1969;312(4):139–148. doi: 10.1007/BF00586925. [DOI] [PubMed] [Google Scholar]
- Taglietti V. Effects of antidromic impulses on frog taste receptors. Arch Sci Biol (Bologna) 1969 Jul-Sep;53(3):226–234. [PubMed] [Google Scholar]
- Yamamoto T., Kawamura Y. Gustatory reaction time in human adults. Physiol Behav. 1981 Apr;26(4):715–719. doi: 10.1016/0031-9384(81)90149-9. [DOI] [PubMed] [Google Scholar]