Abstract
The time integrals of the responses of dark-adapted Limulus ventral photoreceptors to flashes exhibit a supralinear dependence on intensity at intermediate intensities. By decomposing the responses into their elementary single-photon components ("bumps"), we are able to calculate the overall quantum efficiency and to display the time courses of the bump amplitude and rate of appearance. Since the time course of the flash response is not slow compared with that of the bump, it was necessary, in order to carry out the decomposition, to develop a new technique for noise analysis of dynamic signals. This new technique should have wide applications. Our main finding is that the supralinearity of the flash responses corresponds to an increase in bump amplitude, with little change in bump duration or quantum efficiency. The time courses of the bump rate and of the change in bump amplitude are peaked and have widths similar to that of the response itself. The peaks of the time courses of the bump rate and amplitude displayed against the starting times of the bumps do not coincide and occur approximately 80 and approximately 40 ms, respectively, before the peak of the response. The time from the start of a bump to its centroid is approximately 70 ms, which means that the time at which the bump centroid reaches its maximum follows the response peak by 30 ms. These results impose constraints on possible mechanisms for the amplitude enhancement.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adolph A. R. Thermal and spectral sensitivities of discrete slow potentials in Limulus eye. J Gen Physiol. 1968 Oct;52(4):584–599. doi: 10.1085/jgp.52.4.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayer D. S., Barlow R. B., Jr Limulus ventral eye. Physiological properties of photoreceptor cells in an organ culture medium. J Gen Physiol. 1978 Oct;72(4):539–563. doi: 10.1085/jgp.72.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Lamb T. D., Yau K. W. Responses of retinal rods to single photons. J Physiol. 1979 Mar;288:613–634. [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Coles J. A. Saturation of the response to light in Limulus ventral photoreceptor. J Physiol. 1979 Nov;296:373–392. doi: 10.1113/jphysiol.1979.sp013011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Harary H. H., Waggoner A. Isopotentiality and an optical determination of series resistance in Limulus ventral photoreceptors. J Physiol. 1979 Nov;296:357–372. doi: 10.1113/jphysiol.1979.sp013010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calman B. G., Chamberlain S. C. Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure. J Gen Physiol. 1982 Dec;80(6):839–862. doi: 10.1085/jgp.80.6.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capovilla M., Cervetto L., Torre V. The effect of phosphodiesterase inhibitors on the electrical activity of toad rods. J Physiol. 1983 Oct;343:277–294. doi: 10.1113/jphysiol.1983.sp014892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark A. W., Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. I. The microanatomy. J Gen Physiol. 1969 Sep;54(3):289–309. doi: 10.1085/jgp.54.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corson D. W., Fein A., Walthall W. W. Chemical excitation of Limulus photoreceptors. II. Vanadate, GTP-gamma-S, and fluoride prolong excitation evoked by dim flashes of light. J Gen Physiol. 1983 Nov;82(5):659–677. doi: 10.1085/jgp.82.5.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVoe R. D. Dual sensitivities of cells in wolf spider eyes at ultraviolet and visible wavelengths of light. J Gen Physiol. 1972 Mar;59(3):247–269. doi: 10.1085/jgp.59.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
- FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FUORTES M. G., YEANDLE S. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS. J Gen Physiol. 1964 Jan;47:443–463. doi: 10.1085/jgp.47.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fain G. L., Lisman J. E. Membrane conductances of photoreceptors. Prog Biophys Mol Biol. 1981;37(2):91–147. doi: 10.1016/0079-6107(82)90021-9. [DOI] [PubMed] [Google Scholar]
- Fein A., Charlton J. S. Enhancement and phototransduction in the ventral eye of limulus. J Gen Physiol. 1977 May;69(5):553–569. doi: 10.1085/jgp.69.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., DeVoe R. D. Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance. J Gen Physiol. 1973 Mar;61(3):273–289. doi: 10.1085/jgp.61.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grzywacz N. M., Hillman P. Biophysical evidence that light adaptation in Limulus photoreceptors is due to a negative feedback. Biophys J. 1988 Mar;53(3):337–348. doi: 10.1016/S0006-3495(88)83111-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grzywacz N. M., Hillman P. Statistical test of linearity of photoreceptor transduction process: Limulus passes, others fail. Proc Natl Acad Sci U S A. 1985 Jan;82(1):232–235. doi: 10.1073/pnas.82.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanani M., Hillman P. Adaptation and facilitation in the barnacle photoreceptor. J Gen Physiol. 1976 Feb;67(2):235–276. doi: 10.1085/jgp.67.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz G. M., Schwartz T. L. Temporal control of voltage-clamped membranes: an examination of principles. J Membr Biol. 1974 Jul 12;17(3):275–291. doi: 10.1007/BF01870188. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt J., Dowling J. E. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J Gen Physiol. 1975 Nov;66(5):617–648. doi: 10.1085/jgp.66.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laughlin S. B., Lillywhite P. G. Intrinsic noise in locust photoreceptors. J Physiol. 1982 Nov;332:25–45. doi: 10.1113/jphysiol.1982.sp014398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. E., Brown J. E. Light-induced changes of sensitivity in Limulus ventral photoreceptors. J Gen Physiol. 1975 Oct;66(4):473–488. doi: 10.1085/jgp.66.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. E. Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. Biophys J. 1976 Nov;16(11):1331–1335. doi: 10.1016/S0006-3495(76)85777-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. E., Fain G. L., O'Day P. M. Voltage-dependent conductances in Limulus ventral photoreceptors. J Gen Physiol. 1982 Feb;79(2):187–209. doi: 10.1085/jgp.79.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. E., Strong J. A. The initiation of excitation and light adaptation in Limulus ventral photoreceptors. J Gen Physiol. 1979 Feb;73(2):219–243. doi: 10.1085/jgp.73.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinez J. M., 2nd, Srebro R. Calcium and the control of discrete wave latency in the ventral photoreceptor of Limulus. J Physiol. 1976 Oct;261(3):535–562. doi: 10.1113/jphysiol.1976.sp011573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J Gen Physiol. 1982 Mar;79(3):361–385. doi: 10.1085/jgp.79.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Stevens C. F. Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng. 1977;6:345–381. doi: 10.1146/annurev.bb.06.060177.002021. [DOI] [PubMed] [Google Scholar]
- Nygaard R. W., Frumkes T. E. LEDs: convenient, inexpensive sources for visual experimentation. Vision Res. 1982;22(4):435–440. doi: 10.1016/0042-6989(82)90190-0. [DOI] [PubMed] [Google Scholar]
- Payne R., Fein A. The initial response of Limulus ventral photoreceptors to bright flashes. Released calcium as a synergist to excitation. J Gen Physiol. 1986 Feb;87(2):243–269. doi: 10.1085/jgp.87.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholes J. Discontinuity of the excitation process in locust visual cells. Cold Spring Harb Symp Quant Biol. 1965;30:517–527. doi: 10.1101/sqb.1965.030.01.050. [DOI] [PubMed] [Google Scholar]
- Sigworth F. J. Covariance of nonstationary sodium current fluctuations at the node of Ranvier. Biophys J. 1981 Apr;34(1):111–133. doi: 10.1016/S0006-3495(81)84840-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigworth F. J. Interpreting power spectra from nonstationary membrane current fluctuations. Biophys J. 1981 Aug;35(2):289–300. doi: 10.1016/S0006-3495(81)84790-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith T. G., Jr, Barker J. L., Smith B. M., Colburn T. R. Voltage clamping with microelectrodes. J Neurosci Methods. 1980 Dec;3(2):105–128. doi: 10.1016/0165-0270(80)90020-5. [DOI] [PubMed] [Google Scholar]
- Srebro R., Behbehani M. Light adaptation of discrete waves in the Limulus photoreceptor. J Gen Physiol. 1972 Jul;60(1):86–101. doi: 10.1085/jgp.60.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeda T. Discrete potential waves in the photoreceptors of a gastropod mollusc, Hermissenda crassicornis. Vision Res. 1982;22(2):303–309. doi: 10.1016/0042-6989(82)90130-4. [DOI] [PubMed] [Google Scholar]
- Wong F., Knight B. W. Adapting-bump model for eccentric cells of Limulus. J Gen Physiol. 1980 Nov;76(5):539–557. doi: 10.1085/jgp.76.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong F., Knight B. W., Dodge F. A. Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol. 1982 Jun;79(6):1089–1113. doi: 10.1085/jgp.79.6.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong F., Knight B. W., Dodge F. A. Dispersion of latencies in photoreceptors of Limulus and the adapting-bump model. J Gen Physiol. 1980 Nov;76(5):517–537. doi: 10.1085/jgp.76.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong F. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature. 1978 Nov 2;276(5683):76–79. doi: 10.1038/276076a0. [DOI] [PubMed] [Google Scholar]
- Wu C. F., Pak W. L. Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J Gen Physiol. 1978 Mar;71(3):249–268. doi: 10.1085/jgp.71.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yau K. W., McNaughton P. A., Hodgkin A. L. Effect of ions on the light-sensitive current in retinal rods. Nature. 1981 Aug 6;292(5823):502–505. doi: 10.1038/292502a0. [DOI] [PubMed] [Google Scholar]
- Yeandle S., Spiegler J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J Gen Physiol. 1973 May;61(5):552–571. doi: 10.1085/jgp.61.5.552. [DOI] [PMC free article] [PubMed] [Google Scholar]