Abstract
The properties of voltage-dependent Na channels modified by veratridine (VTD) were studied in voltage-clamped nodes of Ranvier of the frog Rana pipiens. Two modes of gating of VTD-modified channels are described. The first, occurring on a time scale of milliseconds, is shown to be the transition of channels between a modified resting state and a modified open state. There are important qualitative and quantitative differences of this gating process in nerve compared with that in muscle (Leibowitz et al., 1986). A second gating process occurring on a time scale of seconds, was originally described as a modified activation process (Ulbricht, 1969). This process is further analyzed here, and a model is presented in which the slow process represents the gating of VTD-modified channels between open and inactivated states. An expanded model is a step in the direction of unifying the known rapid and slow physiologic processes of Na channels modified by VTD and related alkaloid neurotoxins.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Catterall W. A. Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J Biol Chem. 1975 Jun 10;250(11):4053–4059. [PubMed] [Google Scholar]
- Chandler W. K., Meves H. Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol. 1970 Dec;211(3):653–678. doi: 10.1113/jphysiol.1970.sp009298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garber S. S., Miller C. Single Na+ channels activated by veratridine and batrachotoxin. J Gen Physiol. 1987 Mar;89(3):459–480. doi: 10.1085/jgp.89.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leibowitz M. D., Sutro J. B., Hille B. Voltage-dependent gating of veratridine-modified Na channels. J Gen Physiol. 1986 Jan;87(1):25–46. doi: 10.1085/jgp.87.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leicht R., Meves H., Wellhöner H. H. Slow changes of membrane permeability in giant neurones of Helix pomatia. Pflugers Arch. 1971;323(1):63–79. doi: 10.1007/BF00586567. [DOI] [PubMed] [Google Scholar]
- Leicht R., Meves H., Wellhöner H. H. The effect of veratridine on Helix pomatia neurones. Pflugers Arch. 1971;323(1):50–62. doi: 10.1007/BF00586566. [DOI] [PubMed] [Google Scholar]
- McKinney L. C. Effect of veratridine on membrane potential of sartorius muscle from Rana pipiens. Am J Physiol. 1984 Nov;247(5 Pt 1):C309–C313. doi: 10.1152/ajpcell.1984.247.5.C309. [DOI] [PubMed] [Google Scholar]
- Ota M., Narahashi T., Keeler R. F. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J Pharmacol Exp Ther. 1973 Jan;184(1):143–154. [PubMed] [Google Scholar]
- Rando T. A., Wang G. K., Strichartz G. R. The interaction between the activator agents batrachotoxin and veratridine and the gating processes of neuronal sodium channels. Mol Pharmacol. 1986 May;29(5):467–477. [PubMed] [Google Scholar]
- Strichartz G., Rando T., Wang G. K. An integrated view of the molecular toxinology of sodium channel gating in excitable cells. Annu Rev Neurosci. 1987;10:237–267. doi: 10.1146/annurev.ne.10.030187.001321. [DOI] [PubMed] [Google Scholar]
- Sutro J. B. Kinetics of veratridine action on Na channels of skeletal muscle. J Gen Physiol. 1986 Jan;87(1):1–24. doi: 10.1085/jgp.87.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ulbricht W. Rate of veratridine action on the nodal membrane. I. Fast phase determined during sustained depolarization in the voltage clamp. Pflugers Arch. 1972;336(3):187–199. doi: 10.1007/BF00590043. [DOI] [PubMed] [Google Scholar]
- Ulbricht W. Rate of veratridine action on the nodal membrane. II. Fast and slow phase determined with periodic impulses in the voltage clamp. Pflugers Arch. 1972;336(3):201–212. doi: 10.1007/BF00590044. [DOI] [PubMed] [Google Scholar]
- Wang G. K., Strichartz G. Kinetic analysis of the action of Leiurus scorpion alpha-toxin on ionic currents in myelinated nerve. J Gen Physiol. 1985 Nov;86(5):739–762. doi: 10.1085/jgp.86.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto D., Yeh J. Z., Narahashi T. Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channels. Biophys J. 1984 Jan;45(1):337–344. doi: 10.1016/S0006-3495(84)84159-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
