Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1989 Jan 1;93(1):67–83. doi: 10.1085/jgp.93.1.67

Modification of Na channel gating by an alpha scorpion toxin from Tityus serrulatus

PMCID: PMC2216202  PMID: 2536799

Abstract

The effects of TsIV-5, a toxin isolated from the Brazilian scorpion Tityus serrulatus, on whole-cell and single-channel Na currents were determined in N18 neuroblastoma cells. In whole-cell records at a test potential of -10 mV, external application of 500 nM TsIV-5 slowed inactivation 20-fold and increased peak current by about one-third without changing time-to-peak. Both the steady-state activation and inactivation curves were shifted to more negative potentials. Other alpha scorpion toxins produce similar effects but the single-channel mechanism is not known. TsIV-5 caused a voltage-dependent prolongation of mean single-channel open time such that at a test potential of -60 mV no change was observed, whereas at -20 mV mean open time increased about threefold and prolonged bursting was observed. Macroscopic current reconstructed from summed single-channel records showed a characteristic toxin-induced potentiation of peak current and a 20-fold slowing of the decay phase. TsIV-5 does not discriminate between tissue- specific Na channel subtypes. Prolonged open times and bursting were also observed in toxin-treated Na channels from rat ventricular myocytes, rat cortical neurons, and mouse skeletal muscle. The toxin effects are shown to be consistent with a kinetic model in which TsIV-5 selectively interferes with the ability of the channel to reach the inactivated state.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  2. Barhanin J., Giglio J. R., Léopold P., Schmid A., Sampaio S. V., Lazdunski M. Tityus serrulatus venom contains two classes of toxins. Tityus gamma toxin is a new tool with a very high affinity for studying the Na+ channel. J Biol Chem. 1982 Nov 10;257(21):12553–12558. [PubMed] [Google Scholar]
  3. Colquhoun D., Sakmann B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol. 1985 Dec;369:501–557. doi: 10.1113/jphysiol.1985.sp015912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Couraud F., Jover E., Dubois J. M., Rochat H. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon. 1982;20(1):9–16. doi: 10.1016/0041-0101(82)90138-6. [DOI] [PubMed] [Google Scholar]
  5. Cruz L. J., Gray W. R., Olivera B. M., Zeikus R. D., Kerr L., Yoshikami D., Moczydlowski E. Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem. 1985 Aug 5;260(16):9280–9288. [PubMed] [Google Scholar]
  6. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox J. M. Ultra-slow inactivation of the ionic currents through the membrane of myelinated nerve. Biochim Biophys Acta. 1976 Mar 5;426(2):232–244. doi: 10.1016/0005-2736(76)90334-5. [DOI] [PubMed] [Google Scholar]
  8. Gomez M. V., Diniz C. R. Separation of toxic components from the brazillian scorpion Tityus serrulatus venom. Mem Inst Butantan. 1966;33(3):899–902. [PubMed] [Google Scholar]
  9. Gonoi T., Hille B., Catterall W. A. Voltage clamp analysis of sodium channels in normal and scorpion toxin-resistant neuroblastoma cells. J Neurosci. 1984 Nov;4(11):2836–2842. doi: 10.1523/JNEUROSCI.04-11-02836.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonoi T., Hille B. Gating of Na channels. Inactivation modifiers discriminate among models. J Gen Physiol. 1987 Feb;89(2):253–274. doi: 10.1085/jgp.89.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Lux H. D., Brown A. M. Patch and whole cell calcium currents recorded simultaneously in snail neurons. J Gen Physiol. 1984 May;83(5):727–750. doi: 10.1085/jgp.83.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nagy K. Evidence for multiple open states of sodium channels in neuroblastoma cells. J Membr Biol. 1987;96(3):251–262. doi: 10.1007/BF01869307. [DOI] [PubMed] [Google Scholar]
  15. Patlak J., Horn R. Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J Gen Physiol. 1982 Mar;79(3):333–351. doi: 10.1085/jgp.79.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Possani L. D., Martin B. M., Svendsen I., Rode G. S., Erickson B. W. Scorpion toxins from Centruroides noxius and Tityus serrulatus. Primary structures and sequence comparison by metric analysis. Biochem J. 1985 Aug 1;229(3):739–750. doi: 10.1042/bj2290739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quandt F. N. Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells. J Physiol. 1987 Nov;392:563–585. doi: 10.1113/jphysiol.1987.sp016797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Renaud J. F., Fosset M., Schweitz H., Lazdunski M. The interaction of polypeptide neurotoxins with tetrodotoxin-resistant Na+ channels in mammalian cardiac cells. Correlation with inotropic and arrhythmic effects. Eur J Pharmacol. 1986 Jan 21;120(2):161–170. doi: 10.1016/0014-2999(86)90536-4. [DOI] [PubMed] [Google Scholar]
  19. Strichartz G. R., Wang G. K. Rapid voltage-dependent dissociation of scorpion alpha-toxins coupled to Na channel inactivation in amphibian myelinated nerves. J Gen Physiol. 1986 Sep;88(3):413–435. doi: 10.1085/jgp.88.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strichartz G., Rando T., Wang G. K. An integrated view of the molecular toxinology of sodium channel gating in excitable cells. Annu Rev Neurosci. 1987;10:237–267. doi: 10.1146/annurev.ne.10.030187.001321. [DOI] [PubMed] [Google Scholar]
  21. Vandenberg C. A., Horn R. Inactivation viewed through single sodium channels. J Gen Physiol. 1984 Oct;84(4):535–564. doi: 10.1085/jgp.84.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vijverberg H. P., Pauron D., Lazdunski M. The effect of Tityus serrulatus scorpion toxin gamma on Na channels in neuroblastoma cells. Pflugers Arch. 1984 Jul;401(3):297–303. doi: 10.1007/BF00582600. [DOI] [PubMed] [Google Scholar]
  23. Wheeler K. P., Watt D. D., Lazdunski M. Classification of Na channel receptors specific for various scorpion toxins. Pflugers Arch. 1983 Apr;397(2):164–165. doi: 10.1007/BF00582058. [DOI] [PubMed] [Google Scholar]
  24. Yatani A., Kirsch G. E., Possani L. D., Brown A. M. Effects of New World scorpion toxins on single-channel and whole cell cardiac sodium currents. Am J Physiol. 1988 Mar;254(3 Pt 2):H443–H451. doi: 10.1152/ajpheart.1988.254.3.H443. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES