Abstract
In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartoshuk L. M., Cleveland C. T. Mixtures of substances with similar tastes. A test of a psychophysical model of taste mixture interactions. Sens Processes. 1977 May;1(3):177–186. [PubMed] [Google Scholar]
- Bartoshuk L. M. Taste mixtures: is mixture suppression related to compression? Physiol Behav. 1975 May;14(5):643–649. doi: 10.1016/0031-9384(75)90193-6. [DOI] [PubMed] [Google Scholar]
- Bell G. A., Laing D. G., Panhuber H. Odour mixture suppression: evidence for a peripheral mechanism in human and rat. Brain Res. 1987 Nov 17;426(1):8–18. doi: 10.1016/0006-8993(87)90419-7. [DOI] [PubMed] [Google Scholar]
- Borroni P. F., Handrich L. S., Atema J. The role of narrowly tuned taste cell populations in lobster (Homarus americanus) feeding behavior. Behav Neurosci. 1986 Apr;100(2):206–212. doi: 10.1037//0735-7044.100.2.206. [DOI] [PubMed] [Google Scholar]
- Bruch R. C., Rulli R. D. Ligand binding specificity of a neutral L-amino acid olfactory receptor. Comp Biochem Physiol B. 1988;91(3):535–540. doi: 10.1016/0305-0491(88)90018-1. [DOI] [PubMed] [Google Scholar]
- Byrd R. P., Jr, Caprio J. Comparison of olfactory receptor (EOG) and bulbar (EEG) responses to amino acids in the catfish, Ictalurus punctatus. Brain Res. 1982 Oct 7;249(1):73–80. doi: 10.1016/0006-8993(82)90170-6. [DOI] [PubMed] [Google Scholar]
- Caprio J., Byrd R. P., Jr Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish. J Gen Physiol. 1984 Sep;84(3):403–422. doi: 10.1085/jgp.84.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caprio J., Raderman-Little R. Scanning electron microscopy of the channel catfish olfactory lamellae. Tissue Cell. 1978;10(1):1–9. doi: 10.1016/0040-8166(78)90002-2. [DOI] [PubMed] [Google Scholar]
- Carr W. E., Chaney T. B. Chemical stimulation of feeding behavior in the pinfish, Lagodon phomboides: characterization and identification of stimulatory and substances extracted from shrimp. Comp Biochem Physiol A Comp Physiol. 1976;54(4):437–441. doi: 10.1016/0300-9629(76)90046-3. [DOI] [PubMed] [Google Scholar]
- Carr W. E. Chemoreception and feeding behavior in the pigfish, Orthopristis chrysopterus: characterization and identification of stimulatory substances in a shrimp extract. Comp Biochem Physiol A Comp Physiol. 1976;55(2A):153–157. doi: 10.1016/0300-9629(76)90084-0. [DOI] [PubMed] [Google Scholar]
- Chen Z., Ophir D., Lancet D. Monoclonal antibodies to ciliary glycoproteins of frog olfactory neurons. Brain Res. 1986 Mar 19;368(2):329–338. doi: 10.1016/0006-8993(86)90577-9. [DOI] [PubMed] [Google Scholar]
- Drake B., Johansson B., von Sydow E., Coving K. B. Quantitative psychophysical and electro-physiological data on some odorous compounds. Scand J Psychol. 1969;10(2):89–96. doi: 10.1111/j.1467-9450.1969.tb00014.x. [DOI] [PubMed] [Google Scholar]
- Elliott E. J. Chemosensory stimuli in feeding behavior of the leech Hirudo medicinalis. J Comp Physiol A. 1986 Sep;159(3):391–401. doi: 10.1007/BF00603984. [DOI] [PubMed] [Google Scholar]
- Fesenko E. E., Novoselov V. I., Bystrova M. F. Properties of odour-binding glycoproteins from rat olfactory epithelium. Biochim Biophys Acta. 1988 Jan 22;937(2):369–378. doi: 10.1016/0005-2736(88)90259-3. [DOI] [PubMed] [Google Scholar]
- Frijters J. E. Psychophysical models for mixtures of tastants and mixtures of odorants. Ann N Y Acad Sci. 1987;510:67–78. doi: 10.1111/j.1749-6632.1987.tb43469.x. [DOI] [PubMed] [Google Scholar]
- Getchell T. V. Electrogenic sources of slow voltage transients recorded from frog olfactory epithelium. J Neurophysiol. 1974 Nov;37(6):1115–1130. doi: 10.1152/jn.1974.37.6.1115. [DOI] [PubMed] [Google Scholar]
- Getchell T. V., Heck G. L., DeSimone J. A., Price S. The location of olfactory receptor sites. Inferences from latency measurements. Biophys J. 1980 Mar;29(3):397–411. doi: 10.1016/S0006-3495(80)85142-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillan D. J. Mixture suppression: the effect of spatial separation between sucrose and NaCl. Percept Psychophys. 1982 Dec;32(6):504–510. doi: 10.3758/bf03204203. [DOI] [PubMed] [Google Scholar]
- Gillan D. J. Taste-taste, odor-odor, and taste-odor mixtures: greater suppression within than between modalities. Percept Psychophys. 1983 Feb;33(2):183–185. doi: 10.3758/bf03202837. [DOI] [PubMed] [Google Scholar]
- Gleeson R. A., Ache B. W. Amino acid suppression of taurine-sensitive chemosensory neurons. Brain Res. 1985 May 27;335(1):99–107. doi: 10.1016/0006-8993(85)90280-x. [DOI] [PubMed] [Google Scholar]
- Hyman A. M., Frank M. E. Effects of binary taste stimuli on the neural activity of the hamster chorda tympani. J Gen Physiol. 1980 Aug;76(2):125–142. doi: 10.1085/jgp.76.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalinoski D. L., Bruch R. C., Brand J. G. Differential interaction of lectins with chemosensory receptors. Brain Res. 1987 Aug 18;418(1):34–40. doi: 10.1016/0006-8993(87)90959-0. [DOI] [PubMed] [Google Scholar]
- Kobayashi H., Goh Y. Comparison of the olfactory responses to amino acids obtained from receptor and bulbar levels in a marine teleost. Exp Biol. 1985;44(3):199–210. [PubMed] [Google Scholar]
- Laing D. G. Coding of chemosensory stimulus mixtures. Ann N Y Acad Sci. 1987;510:61–66. doi: 10.1111/j.1749-6632.1987.tb43468.x. [DOI] [PubMed] [Google Scholar]
- Lawless H. T. Evidence for neural inhibition in bittersweet taste mixtures. J Comp Physiol Psychol. 1979 Jun;93(3):538–547. doi: 10.1037/h0077582. [DOI] [PubMed] [Google Scholar]
- OTTOSON D. Analysis of the electrical activity of the olfactory epithelium. Acta Physiol Scand Suppl. 1955;35(122):1–83. [PubMed] [Google Scholar]
- Pawson M. G. Analysis of a natural chemical attractant for whiting Merlangius merlangus L. and cod Gadus morhua L. using a behavioural bioassay. Comp Biochem Physiol A Comp Physiol. 1977;56(2):129–135. doi: 10.1016/0300-9629(77)90174-8. [DOI] [PubMed] [Google Scholar]
- Price S. Effects of odorant mixtures on olfactory receptor cells. Ann N Y Acad Sci. 1987;510:55–60. doi: 10.1111/j.1749-6632.1987.tb43467.x. [DOI] [PubMed] [Google Scholar]
- Rhein L. D., Cagan R. H. Biochemical studies of olfaction: binding specificity of odorants to a cilia preparation from rainbow trout olfactory rosettes. J Neurochem. 1983 Aug;41(2):569–577. doi: 10.1111/j.1471-4159.1983.tb04777.x. [DOI] [PubMed] [Google Scholar]
- Rifkin B., Bartoshuk L. M. Taste synergism between monosodium glutamate and disodium 5'-guanylate. Physiol Behav. 1980 Jun;24(6):1169–1172. doi: 10.1016/0031-9384(80)90066-9. [DOI] [PubMed] [Google Scholar]