Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1989 Mar 1;93(3):429–449. doi: 10.1085/jgp.93.3.429

Block of contracture in skinned frog skeletal muscle fibers by calcium antagonists

PMCID: PMC2216221  PMID: 2539431

Abstract

The ability of a number of calcium antagonistic drugs including nitrendipine, D600, and D890 to block contractures in single skinned (sarcolemma removed) muscle fibers of the frog Rana pipiens has been characterized. Contractures were initiated by ionic substitution, which is thought to depolarize resealed transverse tubules in this preparation. Depolarization of the transverse tubules is the physiological trigger for the release of calcium ion from the sarcoplasmic reticulum and thus of contractile protein activation. Since the transverse tubular membrane potential cannot be measured in this preparation, tension development is used as a measure of activation. Once stimulated, fibers become inactivated and do not respond to a second stimulus unless allowed to recover or reprime (Fill and Best, 1988). Fibers exposed to calcium antagonists while fully inactivated do not recover from inactivation (became blocked or paralyzed). The extent of drug-induced block was quantified by comparing the height of individual contractures. Reprimed fibers were significantly less sensitive to block by both nitrendipine (10 degrees C) and D600 (10 and 22 degrees C) than were inactivated fibers. Addition of D600 to fibers recovering from inactivation stopped further recovery, confirming preferential interaction of the drug with the inactivated state. A concerted model that assumed coupled transitions of independent drug-binding sites from the reprimed to the inactivated state adequately described the data obtained from reprimed fibers. Photoreversal of drug action left fibers inactivated even though the drug was initially added to fibers in the reprimed state. This result is consistent with the prediction from the model. The estimated KI for D600 (at 10 degrees and 22 degrees C) and for D890 (at 10 degrees C) was approximately 10 microM. The estimated KI for nitrendipine paralysis of inactivated fibers at 10 degrees C was 16 nM. The sensitivity of reprimed fibers to paralysis by D600 and D890 was similar. However, inactivated fibers were significantly less sensitive to the membrane-impermeant derivative (D890) than to the permeant species (D600), which suggests a change in the drug-binding site or its environment during the inactivation process. The enantomeric dihydropyridines (+) and (-) 202-791, reported to be calcium channel agonists and antagonists, respectively, both caused paralysis, which suggests that blockade of a transverse tubular membrane calcium flux is not the mechanism responsible for antagonist-induced paralysis. The data support a model of excitation-contraction coupling involving transverse tubular proteins that bind calcium antagonists.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Palade P. T. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol. 1981 Mar;312:159–176. doi: 10.1113/jphysiol.1981.sp013622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong C. M., Bezanilla F. M., Horowicz P. Twitches in the presence of ethylene glycol bis( -aminoethyl ether)-N,N'-tetracetic acid. Biochim Biophys Acta. 1972 Jun 23;267(3):605–608. doi: 10.1016/0005-2728(72)90194-6. [DOI] [PubMed] [Google Scholar]
  3. BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berwe D., Gottschalk G., Lüttgau H. C. Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog. J Physiol. 1987 Apr;385:693–707. doi: 10.1113/jphysiol.1987.sp016515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borsotto M., Norman R. I., Fosset M., Lazdunski M. Solubilization of the nitrendipine receptor from skeletal muscle transverse tubule membranes. Interactions with specific inhibitors of the voltage-dependent Ca2+ channel. Eur J Biochem. 1984 Aug 1;142(3):449–455. doi: 10.1111/j.1432-1033.1984.tb08307.x. [DOI] [PubMed] [Google Scholar]
  7. Brandt N. R., Kawamoto R. M., Caswell A. H. Dihydropyridine binding sites on transverse tubules isolated from triads of rabbit skeletal muscle. J Recept Res. 1985;5(2-3):155–170. doi: 10.3109/10799898509041877. [DOI] [PubMed] [Google Scholar]
  8. CURTIS B. A. THE RECOVERY OF CONTRACTILE ABILITY FOLLOWING A CONTRACTURE IN SKELETAL MUSCLE. J Gen Physiol. 1964 May;47:953–964. doi: 10.1085/jgp.47.5.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Caputo C., Bolaños P. Contractile inactivation in frog skeletal muscle fibers. The effects of low calcium, tetracaine, dantrolene, D-600, and nifedipine. J Gen Physiol. 1987 Mar;89(3):421–442. doi: 10.1085/jgp.89.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Costantin L. L., Podolsky R. J. Depolarization of the internal membrane system in the activation of frog skeletal muscle. J Gen Physiol. 1967 May;50(5):1101–1124. doi: 10.1085/jgp.50.5.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Curtis B. M., Catterall W. A. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry. 1984 May 8;23(10):2113–2118. doi: 10.1021/bi00305a001. [DOI] [PubMed] [Google Scholar]
  13. Donaldson S. K., Kerrick W. G. Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J Gen Physiol. 1975 Oct;66(4):427–444. doi: 10.1085/jgp.66.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Donaldson S. K. Peeled mammalian skeletal muscle fibers. Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism. J Gen Physiol. 1985 Oct;86(4):501–525. doi: 10.1085/jgp.86.4.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eisenberg R. S., McCarthy R. T., Milton R. L. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600. J Physiol. 1983 Aug;341:495–505. doi: 10.1113/jphysiol.1983.sp014819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fill M. D., Best P. M. Contractile activation and recovery in skinned frog muscle stimulated by ionic substitution. Am J Physiol. 1988 Jan;254(1 Pt 1):C107–C114. doi: 10.1152/ajpcell.1988.254.1.C107. [DOI] [PubMed] [Google Scholar]
  17. Fosset M., Jaimovich E., Delpont E., Lazdunski M. [3H]nitrendipine receptors in skeletal muscle. J Biol Chem. 1983 May 25;258(10):6086–6092. [PubMed] [Google Scholar]
  18. Franzini-Armstrong C., Nunzi G. Junctional feet and particles in the triads of a fast-twitch muscle fibre. J Muscle Res Cell Motil. 1983 Apr;4(2):233–252. doi: 10.1007/BF00712033. [DOI] [PubMed] [Google Scholar]
  19. Godt R. E., Lindley B. D. Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol. 1982 Aug;80(2):279–297. doi: 10.1085/jgp.80.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gonzalez-Serratos H., Valle-Aguilera R., Lathrop D. A., Garcia M. C. Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature. 1982 Jul 15;298(5871):292–294. doi: 10.1038/298292a0. [DOI] [PubMed] [Google Scholar]
  21. Hui C. S., Milton R. L., Eisenberg R. S. Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2582–2585. doi: 10.1073/pnas.81.8.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hui C. S., Milton R. L. Suppression of charge movement in frog skeletal muscle by D600. J Muscle Res Cell Motil. 1987 Jun;8(3):195–208. doi: 10.1007/BF01574588. [DOI] [PubMed] [Google Scholar]
  23. Karlin A. On the application of "a plausible model" of allosteric proteins to the receptor for acetylcholine. J Theor Biol. 1967 Aug;16(2):306–320. doi: 10.1016/0022-5193(67)90011-2. [DOI] [PubMed] [Google Scholar]
  24. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  25. McCleskey E. W. Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle. J Physiol. 1985 Apr;361:231–249. doi: 10.1113/jphysiol.1985.sp015643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ptasienski J., McMahon K. K., Hosey M. M. High and low affinity states of the dihydropyridine and phenylalkylamine receptors on the cardiac calcium channel and their interconversion by divalent cations. Biochem Biophys Res Commun. 1985 Jun 28;129(3):910–917. doi: 10.1016/0006-291x(85)91978-3. [DOI] [PubMed] [Google Scholar]
  27. Sanchez J. A., Stefani E. Inward calcium current in twitch muscle fibres of the frog. J Physiol. 1978 Oct;283:197–209. doi: 10.1113/jphysiol.1978.sp012496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanguinetti M. C., Kass R. S. Photoalteration of calcium channel blockade in the cardiac Purkinje fiber. Biophys J. 1984 May;45(5):873–880. doi: 10.1016/S0006-3495(84)84233-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  30. Schwartz L. M., McCleskey E. W., Almers W. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. 1985 Apr 25-May 1Nature. 314(6013):747–751. doi: 10.1038/314747a0. [DOI] [PubMed] [Google Scholar]
  31. Siri L. N., Sánchez J. A., Stefani E. Effect of glycerol treatment on the calcium current of frog skeletal muscle. J Physiol. 1980 Aug;305:87–96. doi: 10.1113/jphysiol.1980.sp013351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spiecker W., Melzer W., Lüttgau H. C. Extracellular Ca2+ and excitation-contraction coupling. Nature. 1979 Jul 12;280(5718):158–160. doi: 10.1038/280158a0. [DOI] [PubMed] [Google Scholar]
  33. Stephenson E. W. Properties of chloride-stimulated 45Ca flux in skinned muscle fibers. J Gen Physiol. 1978 Apr;71(4):411–430. doi: 10.1085/jgp.71.4.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takahashi M., Seagar M. J., Jones J. F., Reber B. F., Catterall W. A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5478–5482. doi: 10.1073/pnas.84.15.5478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23;328(6128):313–318. doi: 10.1038/328313a0. [DOI] [PubMed] [Google Scholar]
  36. Volpe P., Stephenson E. W. Ca2+ dependence of transverse tubule-mediated calcium release in skinned skeletal muscle fibers. J Gen Physiol. 1986 Feb;87(2):271–288. doi: 10.1085/jgp.87.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Williams J. S., Grupp I. L., Grupp G., Vaghy P. L., Dumont L., Schwartz A., Yatani A., Hamilton S., Brown A. M. Profile of the oppositely acting enantiomers of the dihydropyridine 202-791 in cardiac preparations: receptor binding, electrophysiological, and pharmacological studies. Biochem Biophys Res Commun. 1985 Aug 30;131(1):13–21. doi: 10.1016/0006-291x(85)91763-2. [DOI] [PubMed] [Google Scholar]
  38. Yatani A., Brown A. M. The calcium channel blocker nitrendipine blocks sodium channels in neonatal rat cardiac myocytes. Circ Res. 1985 Jun;56(6):868–875. doi: 10.1161/01.res.56.6.868. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES