Abstract
The spatial and color coding of the monophasic horizontal cells were studied in light- and dark-adapted retinae. Slit displacement experiments revealed differences in integration area for the different cone inputs of the monophasic horizontal cells. The integration area measured with a 670-nm stimulus was larger than that measured with a 570-nm stimulus. Experiments in which the diameter of the test spot was varied, however, revealed at high stimulus intensities a larger summation area for 520-nm stimuli than for 670-nm stimuli. The reverse was found for low stimulus intensities. To investigate whether these differences were due to interaction between the various cone inputs to the monophasic horizontal cell, adaptation experiments were performed. It was found that the various cone inputs were not independent. Finally, some mechanisms for the spatial and color coding will be discussed.
Full Text
The Full Text of this article is available as a PDF (817.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burkhardt D. A. Sensitization and centre-surround antagonism in Necturus retina. J Physiol. 1974 Feb;236(3):593–610. doi: 10.1113/jphysiol.1974.sp010454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byzov A. L., Trifonov YuA Ionic mechanisms underlying the nonlinearity of horizontal cell membrane. Vision Res. 1981;21(11):1573–1578. doi: 10.1016/0042-6989(81)90034-1. [DOI] [PubMed] [Google Scholar]
- Byzov A. L., Trifonov Y. A., Chailahian L. M., Golubtzov K. W. Amplification of graded potentials in horizontal cells of the retina. Vision Res. 1977 Feb;17(2):265–273. doi: 10.1016/0042-6989(77)90090-6. [DOI] [PubMed] [Google Scholar]
- Estévez O., Spekreijse H. The "silent substitution" method in visual research. Vision Res. 1982;22(6):681–691. doi: 10.1016/0042-6989(82)90104-3. [DOI] [PubMed] [Google Scholar]
- Gerschenfeld H. M., Piccolino M. Sustained feedback effects of L-horizontal cells on turtle cones. Proc R Soc Lond B Biol Sci. 1980 Jan 17;206(1165):465–480. doi: 10.1098/rspb.1980.0008. [DOI] [PubMed] [Google Scholar]
- Hashimoto Y., Kato A., Inokuchi M., Watanabe K. Re-examination of horizontal cells in the carp retina with procion yellow electrode. Vision Res. 1976 Jan;16(1):25–29. doi: 10.1016/0042-6989(76)90072-9. [DOI] [PubMed] [Google Scholar]
- Itzhaki A., Perlman I. Light adaptation in luminosity horizontal cells in the turtle retina. Role of cellular coupling. Vision Res. 1984;24(10):1119–1126. doi: 10.1016/0042-6989(84)90165-2. [DOI] [PubMed] [Google Scholar]
- Itzhaki A., Perlman I. Light adaptation of red cones and L1-horizontal cells in the turtle retina: effect of the background spatial pattern. Vision Res. 1987;27(5):685–696. doi: 10.1016/0042-6989(87)90065-4. [DOI] [PubMed] [Google Scholar]
- Kamermans M., van Dijk B. W., Spekreijse H. Lateral feedback from monophasic horizontal cells to cones in carp retina. II. A quantitative model. J Gen Physiol. 1989 Apr;93(4):695–714. doi: 10.1085/jgp.93.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneko A. Electrical connexions between horizontal cells in the dogfish retina. J Physiol. 1971 Feb;213(1):95–105. doi: 10.1113/jphysiol.1971.sp009370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneko A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol. 1970 May;207(3):623–633. doi: 10.1113/jphysiol.1970.sp009084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneko A. Receptive field organization of bipolar and amacrine cells in the goldfish retina. J Physiol. 1973 Nov;235(1):133–153. doi: 10.1113/jphysiol.1973.sp010381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurz-Isler G., Wolburg H. Gap junctions between horizontal cells in the cyprinid fish alter rapidly their structure during light and dark adaptation. Neurosci Lett. 1986 Jun 6;67(1):7–12. doi: 10.1016/0304-3940(86)90199-0. [DOI] [PubMed] [Google Scholar]
- Lamb T. D. Spatial properties of horizontal cell responses in the turtle retina. J Physiol. 1976 Dec;263(2):239–255. doi: 10.1113/jphysiol.1976.sp011630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasansky A. Synaptic action mediating cone responses to annular illumination in the retina of the larval tiger salamander. J Physiol. 1981 Jan;310:205–214. doi: 10.1113/jphysiol.1981.sp013544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mangel S. C., Dowling J. E. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science. 1985 Sep 13;229(4718):1107–1109. doi: 10.1126/science.4035351. [DOI] [PubMed] [Google Scholar]
- Naka K. I., Witkovsky P. Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells. J Physiol. 1972 Jun;223(2):449–460. doi: 10.1113/jphysiol.1972.sp009857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Negishi K., Teranishi T., Kato S. A GABA antagonist, bicuculline, exerts its uncoupling action on external horizontal cells through dopamine cells in carp retina. Neurosci Lett. 1983 Jun 30;37(3):261–266. doi: 10.1016/0304-3940(83)90441-x. [DOI] [PubMed] [Google Scholar]
- Norton A. L., Spekreijse H., Wolbarsht M. L., Wagner H. G. Receptive field organization of the S-potential. Science. 1968 May 31;160(3831):1021–1022. doi: 10.1126/science.160.3831.1021. [DOI] [PubMed] [Google Scholar]
- O'Connor P., Dorison S. J., Watling K. J., Dowling J. E. Factors affecting release of 3H-dopamine from perfused carp retina. J Neurosci. 1986 Jul;6(7):1857–1865. doi: 10.1523/JNEUROSCI.06-07-01857.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piccolino M., Neyton J., Gerschenfeld H. Center-surround antagonistic organization in small-field luminosity horizontal cells of turtle retina. J Neurophysiol. 1981 Mar;45(3):363–375. doi: 10.1152/jn.1981.45.3.363. [DOI] [PubMed] [Google Scholar]
- Piccolino M., Neyton J., Witkovsky P., Gerschenfeld H. M. gamma-Aminobutyric acid antagonists decrease junctional communication between L-horizontal cells of the retina. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3671–3675. doi: 10.1073/pnas.79.11.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spekreijse H., Norton A. L. The dynamic characteristics of color-coded S-potentials. J Gen Physiol. 1970 Jul;56(1):1–15. doi: 10.1085/jgp.56.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stell W. K., Lightfood D. O., Wheeler T. G., Leeper H. F. Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses. Science. 1975 Dec 5;190(4218):989–990. doi: 10.1126/science.1188380. [DOI] [PubMed] [Google Scholar]
- Stell W. K., Lightfoot D. O. Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. J Comp Neurol. 1975 Feb 15;159(4):473–502. doi: 10.1002/cne.901590404. [DOI] [PubMed] [Google Scholar]
- Tachibana M. Membrane properties of solitary horizontal cells isolated from goldfish retina. J Physiol. 1981 Dec;321:141–161. doi: 10.1113/jphysiol.1981.sp013976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tauchi M., Yang X., Kaneko A. Depolarizing responses of L-type external horizontal cells in the goldfish retina under intense chromatic background. Vision Res. 1984;24(8):867–870. doi: 10.1016/0042-6989(84)90159-7. [DOI] [PubMed] [Google Scholar]
- Teranishi T., Negishi K., Kato S. Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature. 1983 Jan 20;301(5897):243–246. doi: 10.1038/301243a0. [DOI] [PubMed] [Google Scholar]
- Teranishi T., Negishi K., Kato S. Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina. J Neurosci. 1984 May;4(5):1271–1280. doi: 10.1523/JNEUROSCI.04-05-01271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trifonov I. U. Izuchenie sinapticheskoi peredachi mezhdu fotoretseptorom i gorizontal'noi kletkoi pri pomoshchi élektricheskikh razdrazhenii setchatki. Biofizika. 1968 Sep-Oct;13(5):809–817. [PubMed] [Google Scholar]
- Usui S., Mitarai G., Sakakibara M. Discrete nonlinear reduction model for horizontal cell response in the carp retina. Vision Res. 1983;23(4):413–420. doi: 10.1016/0042-6989(83)90088-3. [DOI] [PubMed] [Google Scholar]
- Van Buskirk R., Dowling J. E. Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7825–7829. doi: 10.1073/pnas.78.12.7825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werblin F. S. Anomalous rectification in horizontal cells. J Physiol. 1975 Jan;244(3):639–657. doi: 10.1113/jphysiol.1975.sp010817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolburg H., Kurz-Isler G. Dynamics of gap junctions between horizontal cells in the goldfish retina. Exp Brain Res. 1985;60(2):397–401. doi: 10.1007/BF00235935. [DOI] [PubMed] [Google Scholar]
- Yagi T. Interaction between the soma and the axon terminal of retinal horizontal cells in Cyprinus carpio. J Physiol. 1986 Jun;375:121–135. doi: 10.1113/jphysiol.1986.sp016109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagi T., Kaneko A. Membrane properties and the signal conduction of the horizontal cell syncytium of the teleost retina. Neurosci Res Suppl. 1987;6:S119–S132. doi: 10.1016/0921-8696(87)90012-0. [DOI] [PubMed] [Google Scholar]
- Yang X. L., Tauchi M., Kaneko A. Convergence of signals from red-sensitive and green-sensitive cones onto L-type external horizontal cells of the goldfish retina. Vision Res. 1983;23(4):371–380. doi: 10.1016/0042-6989(83)90084-6. [DOI] [PubMed] [Google Scholar]
- Yang X. L., Tauchi M., Kaneko A. Quantitative analysis of photoreceptor inputs to external horizontal cells in the goldfish retina. Jpn J Physiol. 1982;32(3):399–420. doi: 10.2170/jjphysiol.32.399. [DOI] [PubMed] [Google Scholar]
- van Dijk B. W., Spekreijse H. Color fundamentals deduced from carp ganglion cell responses. Vision Res. 1984;24(3):211–220. doi: 10.1016/0042-6989(84)90123-8. [DOI] [PubMed] [Google Scholar]