Abstract
The apical membrane of mammalian proximal tubule undergoes rapid membrane cycling by exocytosis and endocytosis. Osmotic water and ATP- driven proton transport were measured in endocytic vesicles from rabbit and rat proximal tubule apical membrane labeled in vivo with the fluid phase marker fluorescein-dextran. Osmotic water permeability (Pf) was determined from the time course of fluorescein-dextran fluorescence after exposure of endosomes to an inward osmotic gradient in a stopped- flow apparatus. Pf was 0.009 (rabbit) and 0.029 cm/s (rat) (23 degrees C) and independent of osmotic gradient size. Pf in rabbit endosomes was inhibited reversibly by HgCl2 (KI = 0.2 mM) and had an activation energy of 6.4 +/- 0.5 kcal/mol (15-35 degrees C). Endosomal proton ATPase activity was measured from the time course of internal pH, measured by fluorescein-dextran fluorescence, after the addition of external ATP. Endosomes contained an ATP-driven proton pump that was sensitive to N-ethylmaleimide and insensitive to vanadate and oligomycin. In response to saturating [ATP] the pump acidified the endosomal compartment at a rate of 0.17 (rat) and 0.029 pH unit/s (rabbit); at an external pH of 7.4, the steady-state pH was 6.4 (rat) and 6.5 (rabbit). To examine whether water channels and the proton ATPase were present in the same endosome, the time course of fluorescein-dextran fluorescence was measured in response to an osmotic gradient in the presence and absence of ATP. ATP did not alter endosome Pf, but decreased the amplitude of the fluorescence signal by 43 +/- 3% (rabbit) and 47 +/- 4% (rat).(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berry C. A., Verkman A. S. Osmotic gradient dependence of osmotic water permeability in rabbit proximal convoluted tubule. J Membr Biol. 1988 Oct;105(1):33–43. doi: 10.1007/BF01871104. [DOI] [PubMed] [Google Scholar]
- Bode F., Pockrandt-Hemstedt H., Baumann K., Kinne R. Analysis of the pinocytic process in rat kidney. I. Isolation of pinocytic vesicles from rat kidney cortex. J Cell Biol. 1974 Dec;63(3):998–1008. doi: 10.1083/jcb.63.3.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen P. Y., Pearce D., Verkman A. S. Membrane water and solute permeability determined quantitatively by self-quenching of an entrapped fluorophore. Biochemistry. 1988 Jul 26;27(15):5713–5718. doi: 10.1021/bi00415a048. [DOI] [PubMed] [Google Scholar]
- Chen P. Y., Verkman A. S. Non-electrolyte transport across renal proximal tubule cell membranes measured by tracer efflux and light scattering. Pflugers Arch. 1987 May;408(5):491–496. doi: 10.1007/BF00585074. [DOI] [PubMed] [Google Scholar]
- Frömter E. Viewing the kidney through microelectrodes. Am J Physiol. 1984 Nov;247(5 Pt 2):F695–F705. doi: 10.1152/ajprenal.1984.247.5.F695. [DOI] [PubMed] [Google Scholar]
- Gurich R. W., Warnock D. G. Electrically neutral Na+-H+ exchange in endosomes obtained from rabbit renal cortex. Am J Physiol. 1986 Oct;251(4 Pt 2):F702–F709. doi: 10.1152/ajprenal.1986.251.4.F702. [DOI] [PubMed] [Google Scholar]
- Hopfer U., Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem. 1980 May 25;255(10):4453–4462. [PubMed] [Google Scholar]
- Ives H. E., Chen P. Y., Verkman A. S. Mechanism of coupling between Cl- and OH- transport in renal brush-border membranes. Biochim Biophys Acta. 1986 Dec 1;863(1):91–100. doi: 10.1016/0005-2736(86)90390-1. [DOI] [PubMed] [Google Scholar]
- Kim Y. K., Illsley N. P., Verkman A. S. Rapid fluorescence assay of glucose and neutral solute transport using an entrapped volume indicator. Anal Biochem. 1988 Aug 1;172(2):403–409. doi: 10.1016/0003-2697(88)90462-9. [DOI] [PubMed] [Google Scholar]
- Kuwahara M., Berry C. A., Verkman A. S. Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique. Biophys J. 1988 Oct;54(4):595–602. doi: 10.1016/S0006-3495(88)82994-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer M. M., Verkman A. S. Evidence for water channels in renal proximal tubule cell membranes. J Membr Biol. 1987;96(2):107–119. doi: 10.1007/BF01869237. [DOI] [PubMed] [Google Scholar]
- Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratz J., Ripoche P., Corman B. Evidence for proteic water pathways in the luminal membrane of kidney proximal tubule. Biochim Biophys Acta. 1986 Apr 14;856(2):259–266. doi: 10.1016/0005-2736(86)90035-0. [DOI] [PubMed] [Google Scholar]
- Preisig P. A., Ives H. E., Cragoe E. J., Jr, Alpern R. J., Rector F. C., Jr Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest. 1987 Oct;80(4):970–978. doi: 10.1172/JCI113190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodman J. S., Seidman L., Farquhar M. G. The membrane composition of coated pits, microvilli, endosomes, and lysosomes is distinctive in the rat kidney proximal tubule cell. J Cell Biol. 1986 Jan;102(1):77–87. doi: 10.1083/jcb.102.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRAUS W. OCCURRENCE OF PHAGOSOMES AND PHAGO-LYSOSOMES IN DIFFERENT SEGMENTS OF THE NEPHRON IN RELATION TO THE REABSORPTION, TRANSPORT, DIGESTION, AND EXTRUSION OF INTRAVENOUSLY INJECTED HORSERADISH PEROXIDASE. J Cell Biol. 1964 Jun;21:295–308. doi: 10.1083/jcb.21.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabolić I., Burckhardt G. Characteristics of the proton pump in rat renal cortical endocytotic vesicles. Am J Physiol. 1986 May;250(5 Pt 2):F817–F826. doi: 10.1152/ajprenal.1986.250.5.F817. [DOI] [PubMed] [Google Scholar]
- Sabolić I., Burckhardt G. Proton ATPase in rat renal cortical endocytotic vesicles. Biochim Biophys Acta. 1988 Jan 22;937(2):398–410. doi: 10.1016/0005-2736(88)90262-3. [DOI] [PubMed] [Google Scholar]
- Sabolić I., Haase W., Burckhardt G. ATP-dependent H+ pump in membrane vesicles from rat kidney cortex. Am J Physiol. 1985 Jun;248(6 Pt 2):F835–F844. doi: 10.1152/ajprenal.1985.248.6.F835. [DOI] [PubMed] [Google Scholar]
- Stone D. K., Xie X. S. Proton translocating ATPases: issues in structure and function. Kidney Int. 1988 Apr;33(4):767–774. doi: 10.1038/ki.1988.65. [DOI] [PubMed] [Google Scholar]
- Verkman A. S., Dix J. A., Seifter J. L. Water and urea transport in renal microvillus membrane vesicles. Am J Physiol. 1985 May;248(5 Pt 2):F650–F655. doi: 10.1152/ajprenal.1985.248.5.F650. [DOI] [PubMed] [Google Scholar]
- Verkman A. S., Ives H. E. Anomalous driving force for renal brush border H+/OH-transport characterized by using 6-carboxyfluorescein. Biochemistry. 1986 May 20;25(10):2876–2882. doi: 10.1021/bi00358a021. [DOI] [PubMed] [Google Scholar]
- Verkman A. S., Lencer W. I., Brown D., Ausiello D. A. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature. 1988 May 19;333(6170):268–269. doi: 10.1038/333268a0. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Stetson D. L., Lewis S. A. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–117. doi: 10.1111/j.1749-6632.1981.tb15464.x. [DOI] [PubMed] [Google Scholar]
- Warnock D. G., Reenstra W. W., Yee V. J. Na+/H+ antiporter of brush border vesicles: studies with acridine orange uptake. Am J Physiol. 1982 Jun;242(6):F733–F739. doi: 10.1152/ajprenal.1982.242.6.F733. [DOI] [PubMed] [Google Scholar]
- van Heeswijk M. P., van Os C. H. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol. 1986;92(2):183–193. doi: 10.1007/BF01870707. [DOI] [PubMed] [Google Scholar]
