Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1989 Jun 1;93(6):1171–1194. doi: 10.1085/jgp.93.6.1171

Two K+ channel types, muscarinic agonist-activated and inwardly rectifying, in a Cl- secretory epithelium: the avian salt gland

PMCID: PMC2216243  PMID: 2769223

Abstract

Patches of membrane on cells isolated from the nasal salt gland of the domestic duck typically contained two types of K+ channel. One was a large-conductance ("maxi") K+ channel which was activated by intracellular calcium and/or depolarizing membrane voltages, and the other was a smaller-conductance K+ channel which exhibited at least two conductance levels and displayed pronounced inward rectification. Barium blocked both channels, but tetraethylammonium chloride and quinidine selectively blocked the larger K+ channel. The large K+ channel did not appear to open under resting conditions but could be activated by application of the muscarinic agonist, carbachol. The smaller channels were open under resting conditions but the gating was not affected by carbachol. Both of these channels reside in the basolateral membranes of the Cl- secretory cells but they appear to play different roles in the life of the cell.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benham C. D., Bolton T. B., Lang R. J., Takewaki T. The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ -channels in arterial and intestinal smooth muscle cell membranes. Pflugers Arch. 1985 Feb;403(2):120–127. doi: 10.1007/BF00584088. [DOI] [PubMed] [Google Scholar]
  2. Bezanilla F. A high capacity data recording device based on a digital audio processor and a video cassette recorder. Biophys J. 1985 Mar;47(3):437–441. doi: 10.1016/S0006-3495(85)83935-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang D., Hsieh P. S., Dawson D. C. Calcium: a program in BASIC for calculating the composition of solutions with specified free concentrations of calcium, magnesium and other divalent cations. Comput Biol Med. 1988;18(5):351–366. doi: 10.1016/0010-4825(88)90022-4. [DOI] [PubMed] [Google Scholar]
  4. Ernst S. A., Ellis R. A. The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress. J Cell Biol. 1969 Feb;40(2):305–321. doi: 10.1083/jcb.40.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ernst S. A., Mills J. W. Basolateral plasma membrane localiztion of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol. 1977 Oct;75(1):74–94. doi: 10.1083/jcb.75.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Findlay I. A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland. J Physiol. 1984 May;350:179–195. doi: 10.1113/jphysiol.1984.sp015195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallacher D. V., Maruyama Y., Petersen O. H. Patch-clamp study of rubidium and potassium conductances in single cation channels from mammalian exocrine acini. Pflugers Arch. 1984 Aug;401(4):361–367. doi: 10.1007/BF00584336. [DOI] [PubMed] [Google Scholar]
  8. Gallacher D. V., Morris A. P. A patch-clamp study of potassium currents in resting and acetylcholine-stimulated mouse submandibular acinar cells. J Physiol. 1986 Apr;373:379–395. doi: 10.1113/jphysiol.1986.sp016054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greger R., Gögelein H., Schlatter E. Potassium channels in the basolateral membrane of the rectal gland of the dogfish (Squalus acanthias). Pflugers Arch. 1987 Jun;409(1-2):100–106. doi: 10.1007/BF00584755. [DOI] [PubMed] [Google Scholar]
  10. Guggino S. E., Guggino W. B., Green N., Sacktor B. Blocking agents of Ca2+-activated K+ channels in cultured medullary thick ascending limb cells. Am J Physiol. 1987 Feb;252(2 Pt 1):C128–C137. doi: 10.1152/ajpcell.1987.252.2.C128. [DOI] [PubMed] [Google Scholar]
  11. Gögelein H., Greger R., Schlatter E. Potassium channels in the basolateral membrane of the rectal gland of Squalus acanthias. Regulation and inhibitors. Pflugers Arch. 1987 Jun;409(1-2):107–113. doi: 10.1007/BF00584756. [DOI] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hokin M. R., Hokin L. E. The formation and continuous turnover of a fraction of phosphatidic acid on stimulation of NaC1 secretion by acetylcholine in the salt gland. J Gen Physiol. 1967 Mar;50(4):793–811. doi: 10.1085/jgp.50.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hootman S. R., Ernst S. A. Dissociation of avian salt gland: separation procedures and characterization of dissociated cells. Am J Physiol. 1980 May;238(5):C184–C195. doi: 10.1152/ajpcell.1980.238.5.C184. [DOI] [PubMed] [Google Scholar]
  15. Hootman S. R., Ernst S. A. Effect of methacholine on Na+ pump activity and ion content of dispersed avian salt gland cells. Am J Physiol. 1981 Jul;241(1):R77–R86. doi: 10.1152/ajpregu.1981.241.1.R77. [DOI] [PubMed] [Google Scholar]
  16. Hootman S. R., Ernst S. A. [3H]QNB binding to muscarinic receptors in intact avian salt gland cells. Am J Physiol. 1982 Nov;243(5):C254–C261. doi: 10.1152/ajpcell.1982.243.5.C254. [DOI] [PubMed] [Google Scholar]
  17. Iwatsuki N., Petersen O. H. Action of tetraethylammonium on calcium-activated potassium channels in pig pancreatic acinar cells studied by patch-clamp single-channel and whole-cell current recording. J Membr Biol. 1985;86(2):139–144. doi: 10.1007/BF01870780. [DOI] [PubMed] [Google Scholar]
  18. Iwatsuki N., Petersen O. H. Inhibition of Ca2+-activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine. Biochim Biophys Acta. 1985 Oct 10;819(2):249–257. doi: 10.1016/0005-2736(85)90180-4. [DOI] [PubMed] [Google Scholar]
  19. Latorre R., Miller C. Conduction and selectivity in potassium channels. J Membr Biol. 1983;71(1-2):11–30. doi: 10.1007/BF01870671. [DOI] [PubMed] [Google Scholar]
  20. Lowy R. J., Dawson D. C., Ernst S. A. Primary culture of duck salt gland. II. Neurohormonal stimulation of active transport. Am J Physiol. 1985 Jul;249(1 Pt 1):C41–C47. doi: 10.1152/ajpcell.1985.249.1.C41. [DOI] [PubMed] [Google Scholar]
  21. Lowy R. J., Ernst S. A. Beta-adrenergic stimulation of ion transport in primary cultures of avian salt glands. Am J Physiol. 1987 Jun;252(6 Pt 1):C670–C676. doi: 10.1152/ajpcell.1987.252.6.C670. [DOI] [PubMed] [Google Scholar]
  22. Lowy R. J., Schreiber J. H., Dawson D. C., Ernst S. A. Primary culture of duck salt gland. I. Morphology of confluent cell layers. Am J Physiol. 1985 Jul;249(1 Pt 1):C32–C40. doi: 10.1152/ajpcell.1985.249.1.C32. [DOI] [PubMed] [Google Scholar]
  23. Lowy R. J., Schreiber J. H., Ernst S. A. Vasoactive intestinal peptide stimulates ion transport in avian salt gland. Am J Physiol. 1987 Dec;253(6 Pt 2):R801–R808. doi: 10.1152/ajpregu.1987.253.6.R801. [DOI] [PubMed] [Google Scholar]
  24. Marty A., Tan Y. P., Trautmann A. Three types of calcium-dependent channel in rat lacrimal glands. J Physiol. 1984 Dec;357:293–325. doi: 10.1113/jphysiol.1984.sp015501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maruyama Y., Gallacher D. V., Petersen O. H. Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature. 1983 Apr 28;302(5911):827–829. doi: 10.1038/302827a0. [DOI] [PubMed] [Google Scholar]
  26. Maruyama Y., Petersen O. H., Flanagan P., Pearson G. T. Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells. Nature. 1983 Sep 15;305(5931):228–232. doi: 10.1038/305228a0. [DOI] [PubMed] [Google Scholar]
  27. McCann J. D., Welsh M. J. Neuroleptics antagonize a calcium-activated potassium channel in airway smooth muscle. J Gen Physiol. 1987 Feb;89(2):339–352. doi: 10.1085/jgp.89.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Payet M. D., Rousseau E., Sauvé R. Single-channel analysis of a potassium inward rectifier in myocytes of newborn rat heart. J Membr Biol. 1985;86(2):79–88. doi: 10.1007/BF01870774. [DOI] [PubMed] [Google Scholar]
  29. Richards N. W., Dawson D. C. Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am J Physiol. 1986 Jul;251(1 Pt 1):C85–C89. doi: 10.1152/ajpcell.1986.251.1.C85. [DOI] [PubMed] [Google Scholar]
  30. Sakmann B., Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984 Feb;347:641–657. doi: 10.1113/jphysiol.1984.sp015088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sauvé R., Roy G., Payet D. Single channel K+ currents from HeLa cells. J Membr Biol. 1983;74(1):41–49. doi: 10.1007/BF01870593. [DOI] [PubMed] [Google Scholar]
  32. Snider R. M., Roland R. M., Lowy R. J., Agranoff B. W., Ernst S. A. Muscarinic receptor-stimulated Ca2+ signaling and inositol lipid metabolism in avian salt gland cells. Biochim Biophys Acta. 1986 Nov 28;889(2):216–224. doi: 10.1016/0167-4889(86)90107-2. [DOI] [PubMed] [Google Scholar]
  33. Trautmann A., Marty A. Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands. Proc Natl Acad Sci U S A. 1984 Jan;81(2):611–615. doi: 10.1073/pnas.81.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trube G., Hescheler J. Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflugers Arch. 1984 Jun;401(2):178–184. doi: 10.1007/BF00583879. [DOI] [PubMed] [Google Scholar]
  35. Vergara C., Latorre R. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade. J Gen Physiol. 1983 Oct;82(4):543–568. doi: 10.1085/jgp.82.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Welsh M. J., McCann J. D. Intracellular calcium regulates basolateral potassium channels in a chloride-secreting epithelium. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8823–8826. doi: 10.1073/pnas.82.24.8823. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES