Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1989 Jun 1;93(6):1075–1090. doi: 10.1085/jgp.93.6.1075

Tonic and phasic block of neuronal sodium currents by 5-hydroxyhexano- 2',6'-xylide, a neutral lidocaine homologue

PMCID: PMC2216248  PMID: 2549174

Abstract

The effects of a neutral lidocaine homologue, 5-hydroxyhexano-2',6'- xylidide (5-HHX), on the kinetics and amplitude of sodium currents in voltage-clamped amphibian nerve fibers are described. 5-HHX produced two types of sodium current inhibition: (a) tonic block, in resting fibers (IC50 approximately 2 mM), and (b) phasic block, an additional, incremental inhibition, in repetitively depolarized fibers (frequency greater than 1 Hz). The kinetics of phasic block were characterized by a single-receptor, switched-affinity model, in which binding increases during a depolarizing pulse and decreases between pulses. In the presence of 4 mM 5-HHX, binding increased during pulses from -80 to 0 mV, with an apparent rate constant of 6.4 +/- 1.4 s-1. Binding decreased between pulses with an apparent rate constant of 1.1 +/- 0.3 s-1. There was little effect of extracellular pH on the kinetics of phasic block. These findings demonstrate that neither the presence of a terminal amine nor a net charge on a local anesthetic is required for phasic block of sodium channels.

Full Text

The Full Text of this article is available as a PDF (912.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arhem P., Frankenhaeuser B. Local anesthetics: effects on permeability properties of nodal membrane in myelinated nerve fibres from xenopus. Potential clamp experiments. Acta Physiol Scand. 1974 May;91(1):11–21. doi: 10.1111/j.1748-1716.1974.tb05652.x. [DOI] [PubMed] [Google Scholar]
  2. Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benoit E., Corbier A., Dubois J. M. Evidence for two transient sodium currents in the frog node of Ranvier. J Physiol. 1985 Apr;361:339–360. doi: 10.1113/jphysiol.1985.sp015649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broughton A., Grant A. O., Starmer C. F., Klinger J. K., Stambler B. S., Strauss H. C. Lipid solubility modulates pH potentiation of local anesthetic block of Vmax reactivation in guinea pig myocardium. Circ Res. 1984 Oct;55(4):513–523. doi: 10.1161/01.res.55.4.513. [DOI] [PubMed] [Google Scholar]
  5. Courtney K. R., Kendig J. J., Cohen E. N. The rates of interaction of local anesthetics with sodium channels in nerve. J Pharmacol Exp Ther. 1978 Nov;207(2):594–604. [PubMed] [Google Scholar]
  6. Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
  7. DODGE F. A., FRANKENHAEUSER B. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J Physiol. 1958 Aug 29;143(1):76–90. doi: 10.1113/jphysiol.1958.sp006045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frazier D. T., Narahashi T., Yamada M. The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J Pharmacol Exp Ther. 1970 Jan;171(1):45–51. [PubMed] [Google Scholar]
  9. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hille B. Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature. 1966 Jun 18;210(5042):1220–1222. doi: 10.1038/2101220a0. [DOI] [PubMed] [Google Scholar]
  11. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hille B. The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol. 1977 Apr;69(4):475–496. doi: 10.1085/jgp.69.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  14. Meeder T., Ulbricht W. Action of benzocaine on sodium channels of frog nodes of Ranvier treated with chloramine-T. Pflugers Arch. 1987 Jul;409(3):265–273. doi: 10.1007/BF00583475. [DOI] [PubMed] [Google Scholar]
  15. Mrose H. E., Ritchie J. M. Local Anesthetics: do benzocaine and lidocaine act at the same single site? J Gen Physiol. 1978 Feb;71(2):223–225. [PMC free article] [PubMed] [Google Scholar]
  16. Neumcke B., Schwarz W., Stämpfli R. Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflugers Arch. 1981 Jun;390(3):230–236. doi: 10.1007/BF00658267. [DOI] [PubMed] [Google Scholar]
  17. Rando T. A., Wang G. K., Strichartz G. R. The interaction between the activator agents batrachotoxin and veratridine and the gating processes of neuronal sodium channels. Mol Pharmacol. 1986 May;29(5):467–477. [PubMed] [Google Scholar]
  18. Rimmel C., Walle A., Kessler H., Ulbricht W. Rates of block by procaine and benzocaine and the procaine-benzocaine interaction at the node of Ranvier. Pflugers Arch. 1978 Sep 6;376(2):105–118. doi: 10.1007/BF00581574. [DOI] [PubMed] [Google Scholar]
  19. Sanchez V., Arthur G. R., Strichartz G. R. Fundamental properties of local anesthetics. I. The dependence of lidocaine's ionization and octanol:buffer partitioning on solvent and temperature. Anesth Analg. 1987 Feb;66(2):159–165. [PubMed] [Google Scholar]
  20. Schmidtmayer J., Ulbricht W. Interaction of lidocaine and benzocaine in blocking sodium channels. Pflugers Arch. 1980 Aug;387(1):47–54. doi: 10.1007/BF00580843. [DOI] [PubMed] [Google Scholar]
  21. Schneider M. F., Dubois J. M. Effects of benzocaine on the kinetics of normal and batrachotoxin-modified Na channels in frog node of Ranvier. Biophys J. 1986 Sep;50(3):523–530. doi: 10.1016/S0006-3495(86)83490-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwarz J. R., Bromm B., Spielmann R. P., Weytjens J. L. Development of Na inactivation in motor and sensory myelinated nerve fibres of Rana esculenta. Pflugers Arch. 1983 Jul;398(2):126–129. doi: 10.1007/BF00581059. [DOI] [PubMed] [Google Scholar]
  23. Schwarz W., Palade P. T., Hille B. Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J. 1977 Dec;20(3):343–368. doi: 10.1016/S0006-3495(77)85554-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Starmer C. F., Courtney K. R. Modeling ion channel blockade at guarded binding sites: application to tertiary drugs. Am J Physiol. 1986 Oct;251(4 Pt 2):H848–H856. doi: 10.1152/ajpheart.1986.251.4.H848. [DOI] [PubMed] [Google Scholar]
  25. Starmer C. F., Grant A. O., Strauss H. C. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J. 1984 Jul;46(1):15–27. doi: 10.1016/S0006-3495(84)83994-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Starmer C. F. Theoretical characterization of ion channel blockade: ligand binding to periodically accessible receptors. J Theor Biol. 1986 Mar 21;119(2):235–249. doi: 10.1016/s0022-5193(86)80077-7. [DOI] [PubMed] [Google Scholar]
  27. Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tenthorey P. A., Block A. J., Ronfeld R. A., McMaster P. D., Byrnes E. W. New antiarrhythmic agents. 6. Quantitative structure-activity relationships of aminoxylidides. J Med Chem. 1981 Jul;24(7):798–806. doi: 10.1021/jm00139a007. [DOI] [PubMed] [Google Scholar]
  29. Ulbricht W., Stoye-Herzog M. Distinctly different rates of benzocaine action on sodium channels of Ranvier nodes kept open by chloramine-T and veratridine. Pflugers Arch. 1984 Dec;402(4):439–445. doi: 10.1007/BF00583945. [DOI] [PubMed] [Google Scholar]
  30. Vandenberg C. A., Horn R. Inactivation viewed through single sodium channels. J Gen Physiol. 1984 Oct;84(4):535–564. doi: 10.1085/jgp.84.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yeh J. Z., Tanguy J. Na channel activation gate modulates slow recovery from use-dependent block by local anesthetics in squid giant axons. Biophys J. 1985 May;47(5):685–694. doi: 10.1016/S0006-3495(85)83965-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES