Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1989 Jun 1;93(6):1091–1108. doi: 10.1085/jgp.93.6.1091

Calcium dependence of the activation and inactivation kinetics of the light-activated phosphodiesterase of retinal rods

PMCID: PMC2216249  PMID: 2549175

Abstract

The Ca2+ dependence of the kinetics and light sensitivity of light- activated phosphodiesterase was studied with a pH assay in toad and bovine rod disk membranes (RDM), and in a reconstituted system containing GTP-binding protein, phosphodiesterase and rhodopsin kinase. Three statistics, peak hydrolytic velocity, turnoff time, and time to peak velocity, were measured. ATP decreased phosphodiesterase light sensitivity nearly 10-fold and accelerated the dim-flash kinetics of cGMP hydrolysis when compared to those with GTP alone. CA2+ reversed all of the effects of ATP, Ca2+ increased peak velocity, turnoff time, and time to peak velocity, to the values obtained with GTP alone. The Ca2+ dependence of peak velocity and turnoff time can be characterized as hyperbolic saturation functions with a K0.5 for Ca2+ of 1.0-1.5 mM in toad RDM. In bovine RDM the Ca2+ dependence of peak velocity and turnoff time has a K0.5 of 0.1 mM Ca2+. The Ca2+ dependence in the reconstituted system is similar to that in bovine RDM for peak velocity (K0.5 = 0.1 mM Ca2+) but differs for turnoff time (K0.5 = 2.5 mM Ca2+). We tested the hypothesis that a soluble modulator, normally required to confer submicromolar Ca2+ sensitivity, was too dilute in our assay by comparing data obtained at one RDM concentration with those obtained at 10-fold higher RDM, and therefore a constituent protein, concentration. We observe no difference and present a formal analysis of these data that excludes the hypothesis that the soluble modulator binds its target protein with Kd less than 5 microM. The lack of submicromolar Ca2+ dependence of any of the steps in the cGMP cascade that underlie cGMP phosphodiesterase activation and inactivation in vitro argues against Ca2+ regulation of these steps having a significant role in the light adaptation of the intact rod.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem. 1981 Jul 25;256(14):7501–7509. [PubMed] [Google Scholar]
  2. Baehr W., Devlin M. J., Applebury M. L. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem. 1979 Nov 25;254(22):11669–11677. [PubMed] [Google Scholar]
  3. Baehr W., Morita E. A., Swanson R. J., Applebury M. L. Characterization of bovine rod outer segment G-protein. J Biol Chem. 1982 Jun 10;257(11):6452–6460. [PubMed] [Google Scholar]
  4. Barkdoll A. E., 3rd, Pugh E. N., Jr, Sitaramayya A. Kinetics of the hydrolysis of 8-bromo-cyclic GMP by the light-activated phosphodiesterase of toad rods. J Neurochem. 1988 Mar;50(3):839–846. doi: 10.1111/j.1471-4159.1988.tb02989.x. [DOI] [PubMed] [Google Scholar]
  5. Bartfai T. Preparation of metal-chelate complexes and the design of steady-state kinetic experiments involving metal nucleotide complexes. Adv Cyclic Nucleotide Res. 1979;10:219–242. [PubMed] [Google Scholar]
  6. Baylor D. A., Lamb T. D., Yau K. W. Responses of retinal rods to single photons. J Physiol. 1979 Mar;288:613–634. [PMC free article] [PubMed] [Google Scholar]
  7. Bertics P. J., Gill G. N. Self-phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor receptor. J Biol Chem. 1985 Nov 25;260(27):14642–14647. [PubMed] [Google Scholar]
  8. Cobbs W. H., Barkdoll A. E., 3rd, Pugh E. N., Jr Cyclic GMP increases photocurrent and light sensitivity of retinal cones. Nature. 1985 Sep 5;317(6032):64–66. doi: 10.1038/317064a0. [DOI] [PubMed] [Google Scholar]
  9. Cobbs W. H., Pugh E. N., Jr Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation. Nature. 1985 Feb 14;313(6003):585–587. doi: 10.1038/313585a0. [DOI] [PubMed] [Google Scholar]
  10. Del Priore L. V., Lewis A. Calcium-dependent activation and deactivation of rod outer segment phosphodiesterase is calmodulin-independent. Biochem Biophys Res Commun. 1983 May 31;113(1):317–324. doi: 10.1016/0006-291x(83)90468-0. [DOI] [PubMed] [Google Scholar]
  11. Gavin J. R., 3rd, Roth J., Neville D. M., Jr, de Meyts P., Buell D. N. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A. 1974 Jan;71(1):84–88. doi: 10.1073/pnas.71.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hestrin S., Korenbrot J. I. Effects of cyclic GMP on the kinetics of the photocurrent in rods and in detached rod outer segments. J Gen Physiol. 1987 Oct;90(4):527–551. doi: 10.1085/jgp.90.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kawamura S., Bownds M. D. Light adaption of the cyclic GMP phosphodiesterase of frog photoreceptor membranes mediated by ATP and calcium ions. J Gen Physiol. 1981 May;77(5):571–591. doi: 10.1085/jgp.77.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawamura S. Involvement of ATP in activation and inactivation sequence of phosphodiesterase in frog rod outer segments. Biochim Biophys Acta. 1983 Jul 13;732(1):276–281. doi: 10.1016/0005-2736(83)90212-2. [DOI] [PubMed] [Google Scholar]
  15. Kleinschmidt J., Dowling J. E. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J Gen Physiol. 1975 Nov;66(5):617–648. doi: 10.1085/jgp.66.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kohnken R. E., Chafouleas J. G., Eadie D. M., Means A. R., McConnell D. G. Calmodulin in bovine rod outer segments. J Biol Chem. 1981 Dec 10;256(23):12517–12522. [PubMed] [Google Scholar]
  17. Lamb T. D., McNaughton P. A., Yau K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol. 1981;319:463–496. doi: 10.1113/jphysiol.1981.sp013921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lamb T. D., McNaughton P. A., Yau K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol. 1981;319:463–496. doi: 10.1113/jphysiol.1981.sp013921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liebman P. A., Evanczuk A. T. Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes. Methods Enzymol. 1982;81:532–542. doi: 10.1016/s0076-6879(82)81074-4. [DOI] [PubMed] [Google Scholar]
  20. Liebman P. A., Pugh E. N., Jr The control of phosphodiesterase in rod disk membranes: kinetics, possible mechanisms and significance for vision. Vision Res. 1979;19(4):375–380. doi: 10.1016/0042-6989(79)90097-x. [DOI] [PubMed] [Google Scholar]
  21. Matthews H. R., Torre V., Lamb T. D. Effects on the photoresponse of calcium buffers and cyclic GMP incorporated into the cytoplasm of retinal rods. Nature. 1985 Feb 14;313(6003):582–585. doi: 10.1038/313582a0. [DOI] [PubMed] [Google Scholar]
  22. Miki N., Baraban J. M., Keirns J. J., Boyce J. J., Bitensky M. W. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J Biol Chem. 1975 Aug 25;250(16):6320–6327. [PubMed] [Google Scholar]
  23. Miller W. H. Physiological evidence that light-mediated decrease in cyclic GMP is an intermediary process in retinal rod transduction. J Gen Physiol. 1982 Jul;80(1):103–123. doi: 10.1085/jgp.80.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagao S., Yamazaki A., Bitensky M. W. Calmodulin and calmodulin binding proteins in amphibian rod outer segments. Biochemistry. 1987 Mar 24;26(6):1659–1665. doi: 10.1021/bi00380a026. [DOI] [PubMed] [Google Scholar]
  25. Okada D., Ikai A. Purification method of bovine rhodopsin kinase using regeneration of rhodopsin. Anal Biochem. 1988 Mar;169(2):428–431. doi: 10.1016/0003-2697(88)90308-9. [DOI] [PubMed] [Google Scholar]
  26. Palczewski K., McDowell J. H., Hargrave P. A. Rhodopsin kinase: substrate specificity and factors that influence activity. Biochemistry. 1988 Apr 5;27(7):2306–2313. doi: 10.1021/bi00407a010. [DOI] [PubMed] [Google Scholar]
  27. Picton C., Klee C. B., Cohen P. Phosphorylase kinase from rabbit skeletal muscle: identification of the calmodulin-binding subunits. Eur J Biochem. 1980 Oct;111(2):553–561. doi: 10.1111/j.1432-1033.1980.tb04971.x. [DOI] [PubMed] [Google Scholar]
  28. Shigekawa M., Wakabayashi S., Nakamura H. Reaction mechanism of Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum. ATP hydrolysis with CaATP as a substrate and role of divalent cation. J Biol Chem. 1983 Jul 25;258(14):8698–8707. [PubMed] [Google Scholar]
  29. Sitaramayya A., Harkness J., Parkes J. H., Gonzalez-Oliva C., Liebman P. A. Kinetic studies suggest that light-activated cyclic GMP phosphodiesterase is a complex with G-protein subunits. Biochemistry. 1986 Feb 11;25(3):651–656. doi: 10.1021/bi00351a021. [DOI] [PubMed] [Google Scholar]
  30. Sitaramayya A., Liebman P. A. Mechanism of ATP quench of phosphodiesterase activation in rod disc membranes. J Biol Chem. 1983 Jan 25;258(2):1205–1209. [PubMed] [Google Scholar]
  31. Sitaramayya A. Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system. Biochemistry. 1986 Sep 23;25(19):5460–5468. doi: 10.1021/bi00367a017. [DOI] [PubMed] [Google Scholar]
  32. Stock J. B., Koshland D. E., Jr A cyclic mechanism for excitation and adaptation. Curr Top Cell Regul. 1981;18:505–517. doi: 10.1016/b978-0-12-152818-8.50036-0. [DOI] [PubMed] [Google Scholar]
  33. Torre V., Matthews H. R., Lamb T. D. Role of calcium in regulating the cyclic GMP cascade of phototransduction in retinal rods. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7109–7113. doi: 10.1073/pnas.83.18.7109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  35. Vallet B., Molla A., Demaille J. G. Cyclic adenosine 3',5'-monophosphate-dependent regulation of purified bovine aortic calcium/calmodulin-dependent myosin light chain kinase. Biochim Biophys Acta. 1981 May 5;674(2):256–264. doi: 10.1016/0304-4165(81)90383-4. [DOI] [PubMed] [Google Scholar]
  36. Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yau K. W., Nakatani K. Cation selectivity of light-sensitive conductance in retinal rods. Nature. 1984 May 24;309(5966):352–354. doi: 10.1038/309352a0. [DOI] [PubMed] [Google Scholar]
  38. Yau K. W., Nakatani K. Electrogenic Na-Ca exchange in retinal rod outer segment. Nature. 1984 Oct 18;311(5987):661–663. doi: 10.1038/311661a0. [DOI] [PubMed] [Google Scholar]
  39. Yau K. W., Nakatani K. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature. 1985 Feb 14;313(6003):579–582. doi: 10.1038/313579a0. [DOI] [PubMed] [Google Scholar]
  40. Yoshikami S., Robinson W. E., Hagins W. A. Topology of the outer segment membranes of retinal rods and cones revealed by a fluorescent probe. Science. 1974 Sep 27;185(4157):1176–1179. doi: 10.1126/science.185.4157.1176. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES